IL TROMBO RESIDUO

MITO O REALTA'?

Giuseppe Camporese

Azienda Ospedaliera Universitaria di Padova Dipartimento di Scienze Cardiache, Toraciche e Vascolari U.O.C. Angiologia (Direttore: Dr. Giampiero Avruscio)

> Congresso Nazionale del Trentennale SIFL Ferrara, 20-22 ottobre 2016

Venous Thromboembolism (VTE)

- Include deep-vein thrombosis (DVT) and pulmonary embolism (PE)
 - Third most common cardiovascular disease after the myocardial infarction and the ischemic stroke
 - Incidence 1.0-1.6 per 1000/year
 - Prevalence 200.000-250.000 new cases/year (USA)
 - Important cause of mortality and of morbility

"Qualitative" CUS

CUS is a qualitative method providing informations as 0/1, yes/no, +/-

CUS allows to sensitively investigate <u>only</u> patients with a 1st suspect of DVT

If a Come fare a riconoscere e DVT is aggiudicare una TVP recidiva?

objective

CUS is the tool of choice for diagnosis of recurrence in patients with a suspect of a controlateral DVT, but not of an ipsilateral DVT (because of

high RTM incidence and of potential high rates of false positive scans)

Other parameters, as changes in the thrombus lenght, Doppler flow, or intraluminal US appearance ("fresh", "stabilized", "organized") still have not been validated

The "residual thrombus mass"

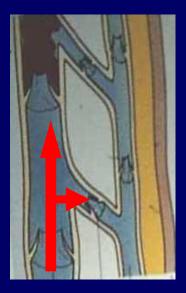
To resolve this issue some Authors suggested to use CUS as a quantitative method

- measuring the thickness of the thrombus at the time of the first diagnosis
- measuring the thickness of the residual thrombus mass during follow-up (after 1, 3, 6 and 12 months)

by means of a full compression of the veins, mainly common femoral and popliteal veins (or where visible) using as index the diameter variation of the vessel as explored in transverse scan

P Prandoni, Circulation 1993;Piovella F, Haematologica 2002; Prandoni P Thromb Haemost 2002

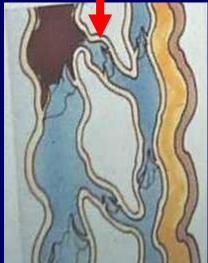
Prandoni P, 1993; Heijboer H, 1992; Piovella F, 2002

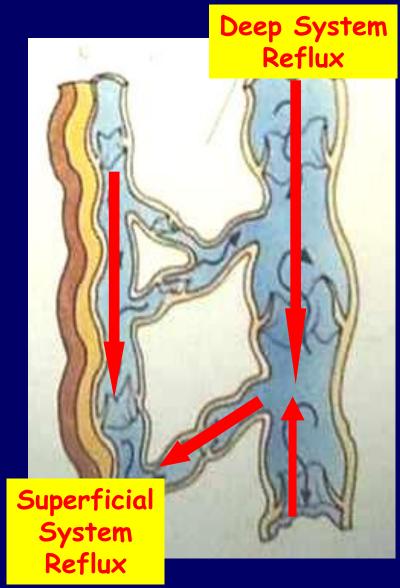

Pathophysiology

- Damage to delicate venous valves by the thrombus itself or by asso **PTS** natory mediators, which causes valvuar remux
- Residual venous de la contraction de la contra

Increased venous pressure (venous hypertension) with reduced muscle perfusion, increased tissue permeability and the associated clinical manifestations

C.V.I. - Persistent Thrombus


Early Phase


Pressure Overload Early balanced dilation of superficial venous wall

Critical Step Involvement of Perforator Veins

Secondary, unbalanced Post-Thrombotic Varicose Veins Obstruction and Small Reflux

C.V.I. - Recanalisation of the Thrombus

Stasis

Volume Overload

Passive Venous Hypertension

Big Reflux

Faster Evolution if the original thrombus was involving the perforator v.

Critical Step Involvement of Perforator Veins

Risk factors for PTS: Present during follow-up

Risk factor	Author, year	Risk estimate	Strength/ Consistency of risk association	
Poor INR control			++	
	Chitsike et al, 2012	OR: 1.84 (95% CI: 1.13-3.01) ; INR < 2 for	> 20% of the time	
	van Dongen <i>et al</i> , 2005	OR: 2.71 (95% CI: 1.44-5.10); TTR < 50%		

LMWH vs VKA for prevention in PTS: Venis recanalisation

В

Study	Patients with	recanalization	Risk/benefit ratio (95% CI fixed effects)	Wt	Risk ratio
	LMWH	OA	(35% CITIXed effects)	%	(0.5% CI)
	n/n	(70)	2 2	70	(95% CI)
Dalteparin 3 months (Das et al., 1996 ¹⁷)	35/44 (79.5)	35/42 (83.3)	+	- 3.39	1.23 (0.52, 2.94)
Enoxaparin >3 months (Gonzalez-Fajardo <i>et al.</i> , 1999 ²⁵)	40/84 (47.6)	14/80 (17.5)		31.97	0.63 (0.50, 0.79)
Nadroparin 3–6 months (Lopez-Beret <i>et al.</i> , 2001 ²⁶)	20/53 (37.7)	7/58 (12.1)		23.03	0.71 (0.55, 0.88)
Bemiparin 3 months (Kakkar et al., 2003 ²⁷)	66/81 (81.5)	135/174 (77.6)		11.72	0.83 (0.48, 1.38)
Tinzaparin 6 months (Romera <i>et al.</i> , 2009 ¹⁹)	87/119 (73.1)	58/122 (47.5)	-=	29.89	0.51 (0.36, 0.71)
	248/381 (65.1)	249/476 (52.3)	A		0.66 (0.57, 0.77)
Heterogeneity <i>p</i> =0.2756, <i>I</i> ² =21.8%			0.5 1 2 LMWH better LM	IWH worse	<i>p</i> <0.0001

R Hull, Am J Med 2011

8 – Possible risk factors for SPT Residual thrombus

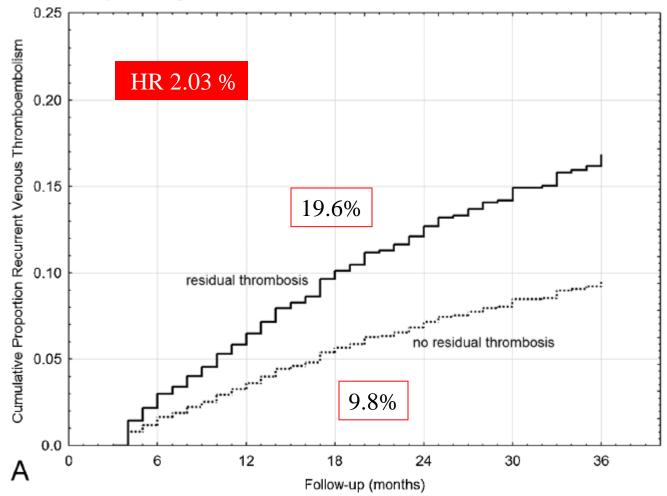
Risk factor	Author, year	Risk estimate	Strength/ Consistency of risk association
Residual thrombus			+
	Vedovetto et al., 2013	RR: 1.92 (95% CI: 1.39-2.64) residual thrombus alone, 1.83 (95% CI 1.26-2.66) residual thrombus + popliteal valve reflux. Popliteal valve insufficiency after 6 months neither predicts the occurrence of PTS nor increases its rate in association with residual thrombosis	
	Comerota <i>et al</i> , 2012	Direct linear correlation of Villalta score with residual thrombus (P = .0014).	
	Galanaud <i>et al,</i> 2012	OR:2.1 (95% CI : 1.1-3.7)	
	Tick <i>et al</i> , 2010	RR: 1.6 (95% CI 1.0-2.5); proximal veins	
	Prandoni et al., 2005	RR : 1.56 (95% CI 1.01–2.45); common femoral and the popliteal vein	

Pathophysiology

- Damage to delicate venous valves by the thrombus itself or by associated inflammatory mediators, which causes valvular reflux
- Residual venous checking in the se of incomplete impaired venous return

Increased venous pressure (venous hypertension) with reduced muscle perfusion, increased tissue permeability and the associated clinical manifestations

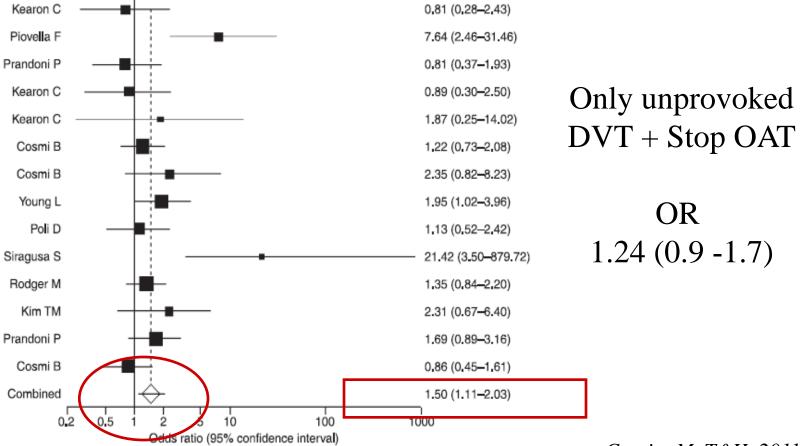
The Diagnostic Value of Compression Ultrasonography in Patients with Suspected Recurrent Deep Vein Thrombosis


Paolo Prandoni¹, Anthonie WA Lensing², Enrico Bernardi¹, Sabina Villalta¹, Paola Bagatella¹, Antonio Girolami¹ for the DERECUS Investigators Group

¹Department of Medical and Surgical Sciences, 2nd Chair of Internal Medicine, University of Padua Medical School, Padua, Italy; ²The Center for Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands

Subgroup analysis							
US findings Pts DVT							
Non- compressibility of a previous normal(ized) vein1010Enlargement of thrombus							
mass > 4 mm	28	28					
Enlargement of thrombus							
$mass \le 4 \text{ mm} \qquad \qquad 8 \qquad \qquad 4$							

The Impact of Residual Thrombosis on the Long-Term Outcome of Patients with Deep Venous Thrombosis Treated with Conventional Anticoagulation


Paolo Prandoni, MD, PhD¹ Anthonie W. A. Lensing, MD, PhD² Martin H. Prins, MD, PhD³ Raffaele Pesavento, MD¹ Andrea Piccioli, MD¹ Maria T. Sartori, MD¹ Daniela Tormene, MD¹ Marta Milan, MD¹ Valentina Vedovetto, MD¹ Franco Noventa, MD¹ Sabina Villalta, MD⁴ Job Harenberg, MD, PhD⁵

IN FOCUS

Residual vein obstruction to predict the risk of recurrent venous thromboembolism in patients with deep vein thrombosis: a systematic review and meta-analysis

M. CARRIER,*† M. A. RODGER,*† P. S. WELLS, *† M. RIGHINI‡§ and G. LE GAL¶

Carrier M, T&H, 2011

bjh review

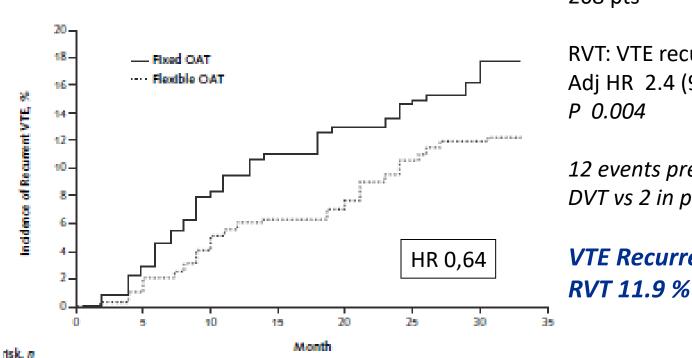
Residual venous thrombosis as predictive factor for recurrent venous thromboembolim in patients with proximal deep vein thrombosis: a sytematic review

	RVT p	present	RVT	absent	C	dds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Odds Ratio M-H, Fixed, 95% Cl		
Malignancy						·			
Cosmi et al (2005b)	16	51	5	37	3.3%	2.93 [0.96, 8.90]	⊢		
Siragusa (2009)	11	47	1	42	0.7%	12.53 [1.54, 101.84]	→		
Subtotal (95% CI)		98		79	4.0%	4-55 [1-76, 11-79]			
Total events	27		6						
Heterogeneity: Chi ² = 1 Test of overall effect: Z			= 33%						
Unprovoked									
Cosmi <i>et al</i> (2005a)	41	225	26	174	19-9%	1.27 [0.74, 2.17]			
Cosmi et al (2010)	17	151	32	246	17.9%	0-85 [0-45, 1-59]			
Rodger et al (2008)	45	231	32	221	21.8%	1-43 [0-87, 2-35]			
Siragusa (2008)	25	92	1	78	0.7%	28.73 [3.79, 217.76]	>		
Subtotal (95% CI)		699		719	60-3%	1.50 [1.12, 2.01]	•		
Total events	128		91						
Heterogeneity: Chi ² – 1 Test of overall effect: Z			<i>I</i> ² - 74%						
Mixed									
Piovella et al (2002)	16	129	4	122	3.0%	4-18 [1-36, 12-87]	— — — — — — — — — — — — — — — — — — —	Total OR	
Poli et al (2008)	14	105	18	153	10.5%	1.15 [0.55, 2.44]		IULAIUN	
Prandoni et al (2002)	30	252	9	61	10.6%	0.78 [0.35, 1.74]			
Prandoni et al (2009)	19	79	27	189	10.0%	1.90 [0.98, 3.67]		2.02 (1.62 – 2.50)	
Siragusa et al (2008)	63	312	2	206	1.6%	25-81 [6-24, 106-75]		()	
Subtotal (95% CI)		877		731	35.7%	2.61 [1.84, 3.69]			
Total events	142		60						
Heterogeneity: Chi ² = 2 Test of overall effect: Z); <i>I</i> ² = 84%	-	-				
Total (95% CI)		1674		1529	100-0%	2.02 [1.62, 2.50]		Tan M, Briti	
Total events	297		157						
Heterogeneity: Chi ² – 4 Test of overall effect: Z Test for subgroup differ	= 6·35 (P <	0.00001)					0.01 0 1 10 100 RVT absent RVT present	Haematology,	

Prognostic significance of residual venous obstruction in patients with treated unprovoked deep vein thrombosis

A patient-level meta-analysis

Variables	Adjusted HR for recurrent VTE (95% CI)	P- value
RVO (present vs absent)	1.32 (1.06- 1.65)	0.015
Age (for 1- year increase)	1.01 (1.00- 1.02)	0.006
Sex (male vs female)	1.49 (1.2- 1.84)	<0.001
Anticoagulation duration before RVO (for 1- day increase)	1.00 (1.00- 1.00)	0.783
Anticoagulation continuation after RVO (yes vs no)	1.08 (0.73- 1.59)	0.712


Annals of Internal Medicine

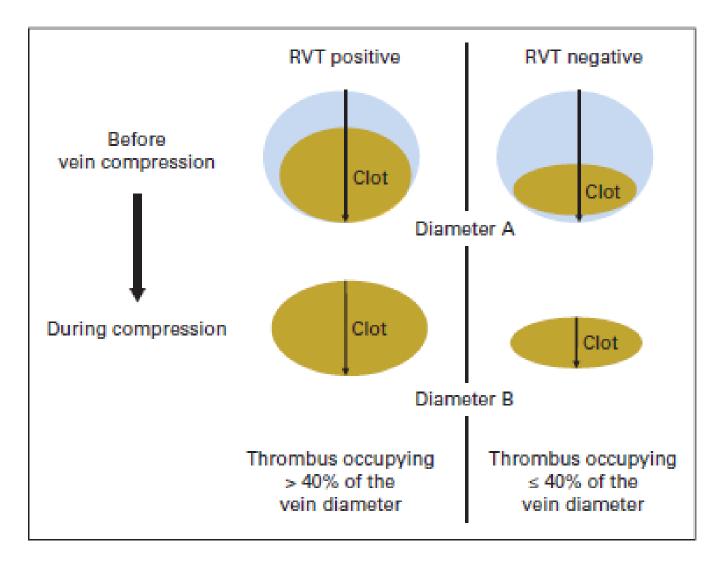
Article

Residual Thrombosis on Ultrasonography to Guide the Duration of Anticoagulation in Patients With Deep Venous Thrombosis

A Randomized Trial

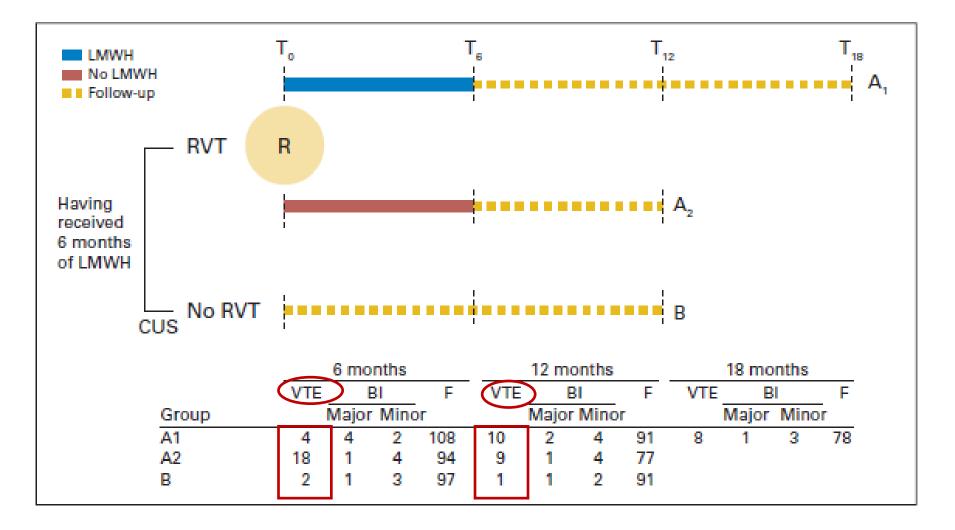
Paolo Prandoni, MD, PhD; Martin H. Prins, MD, PhD; Anthonie W.A. Lensing, MD, PhD; Angelo Ghirarduzzi, MD; Walter Ageno, MD; Davide Imberti, MD; Gianluigi Scannapieco, MD; Giovanni B. Ambrosio, MD; Raffaele Pesavento, MD; Stefano Cuppini, MD; Roberto Quintavalla, MD; and Giancarlo Agnelli, MD, for the AESOPUS Investigators*

268 pts

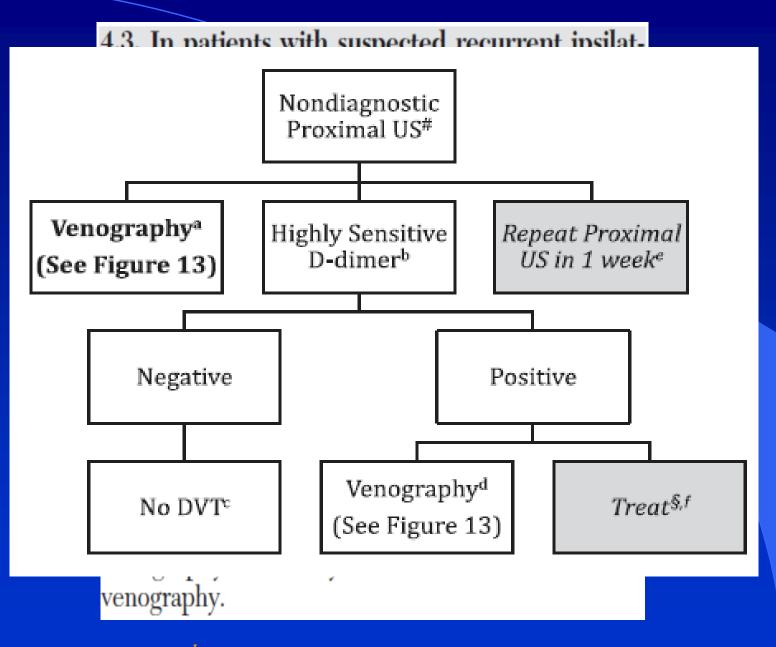

RVT: VTE recurrence Adj HR 2.4 (95%Cl, 1.3 to 4.4) *P 0.004*

12 events prevented in unprovoked DVT vs 2 in provoked DVT

VTE Recurrence in pts with no RVT 11.9 %

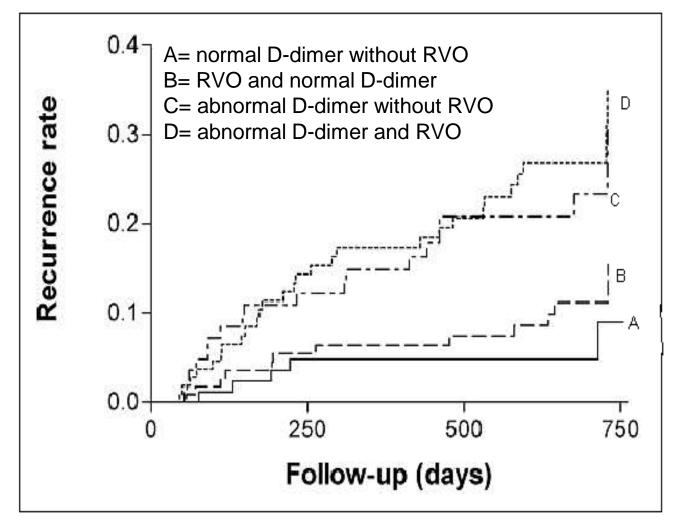

Prandoni P. Ann Intern Med 2009

Evaluation of residual vein thrombosis



DACUS study, M. Napolitano, J Clin Oncol, 2014

DACUS study



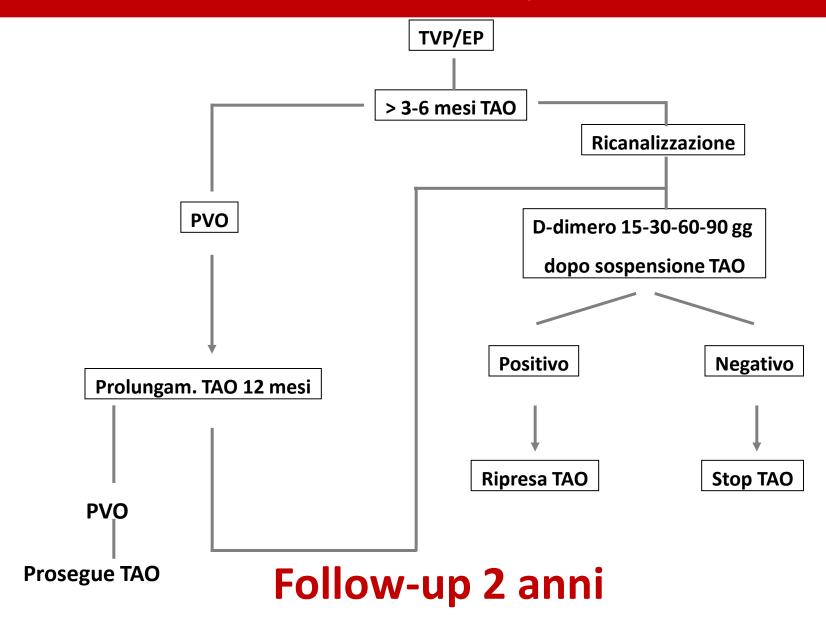
DACUS study, M. Napolitano, J Clin Oncol, 2014

9th ACCP Guidelines, 2012

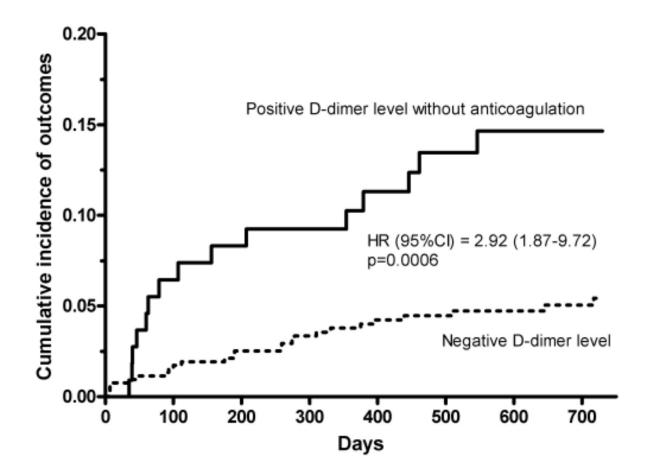
Cumulative probability of recurrence in pts with idiopathic events according to combination of Ddimer and RVO

Cosmi et al., T&H 2005;94:969

The **DULCIS study** (<u>**D**</u>-dimer and <u>**UL**</u>trasonography in <u>**C**</u>ombination <u><u>I</u>talian <u><u>S</u></u>tudy)</u>


A management study to optimize the duration of anticoagulation after a 1st VTE

Executive Committee:


Gualtiero Palareti (Bologna), Vittorio Pengo (Padova), Paolo Prandoni (Padova)

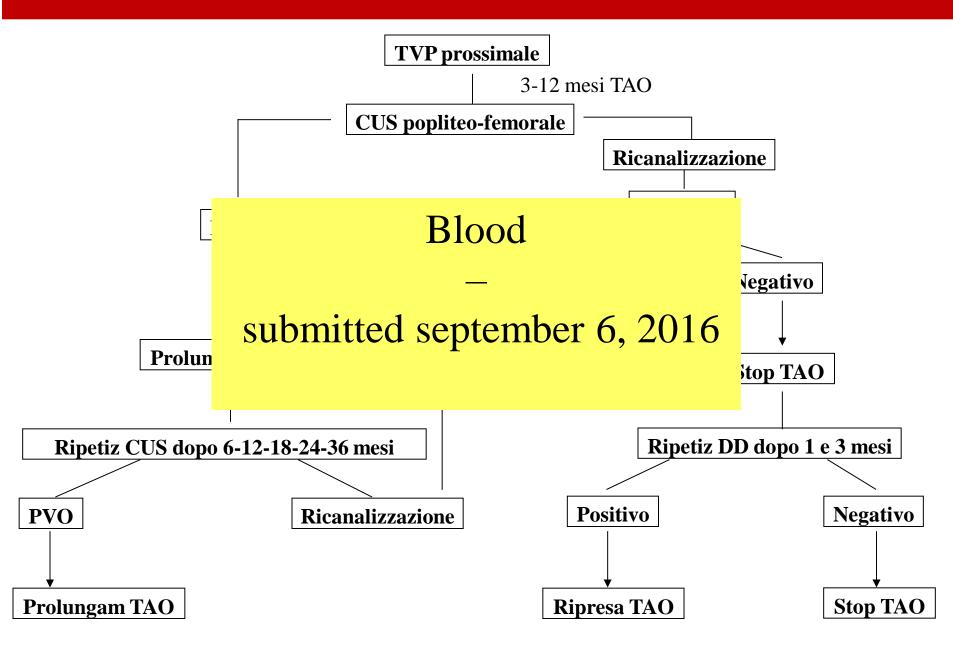
Blood, 2014

Studio DULCIS: flow-chart



Cumulative event rates for the primary efficacy outcomes

Palareti G. et al, Blood May 30, 2014


STUDIO MORGAGNI

Identificazione della durata ottimale della terapia anticoagulante nella trombosi venosa profonda

A cura di Paolo Prandoni, Vittorio Pengo, Gualtiero Palareti

Studio Morgagni: flow-chart

