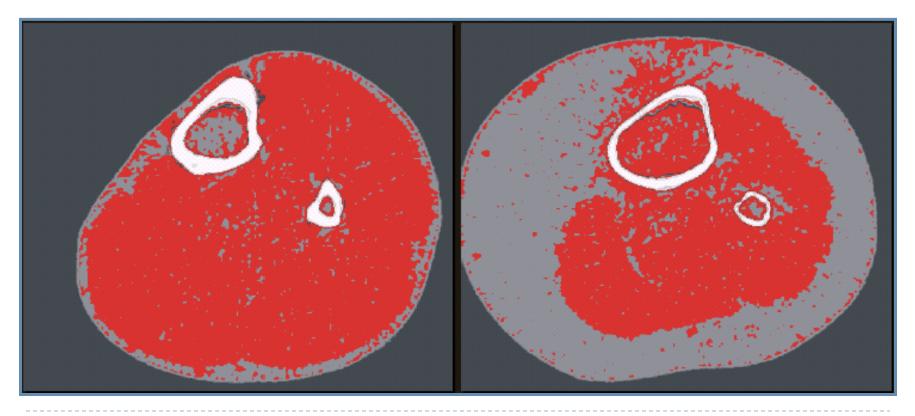


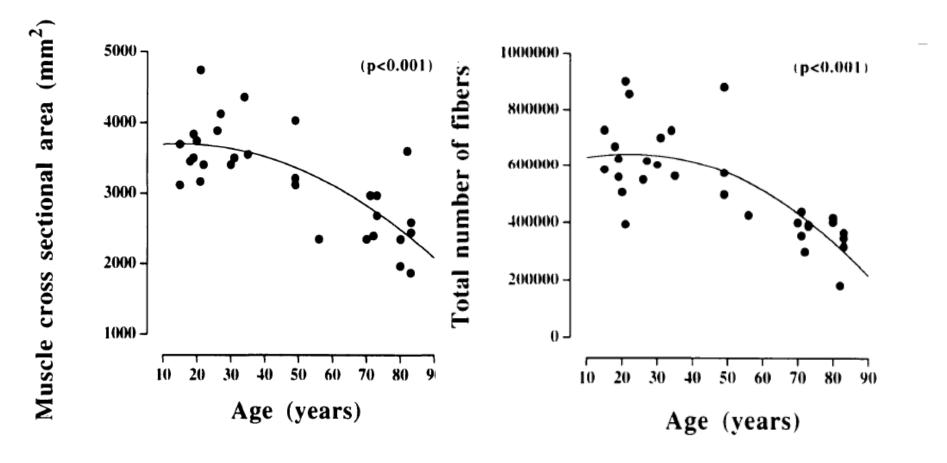
CONVEGNO LA GERIATRIA IN EMILIA ROMAGNA 2016 Convegno Congiunto SIGG - SIGOT - AGE Regione Emilia Romagna

Diagnosi e Trattamento della Sarcopenia nell'Anziano

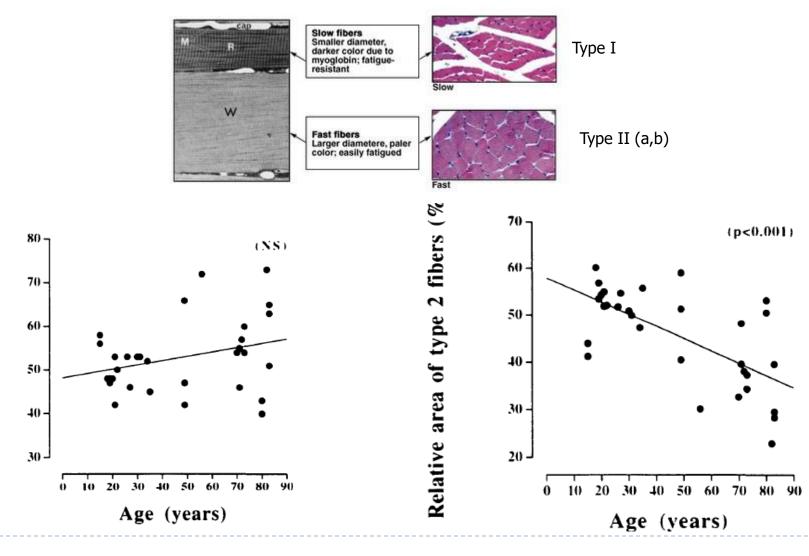
Stefano Volpato

Dipartimento di Scienze Mediche – UNIFE & Dipartimento Medico ad Attività Integrata – OSPFE


SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Ferrara

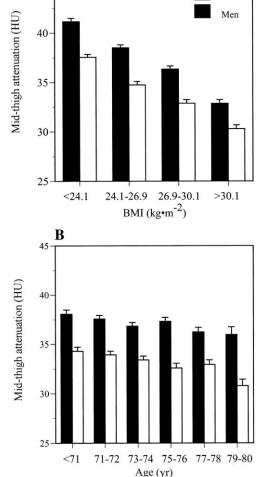

Università di Ferrara - ex labore fructus -

Sarcopenia (sarx penia)


Age related decline in skeletal muscle mass

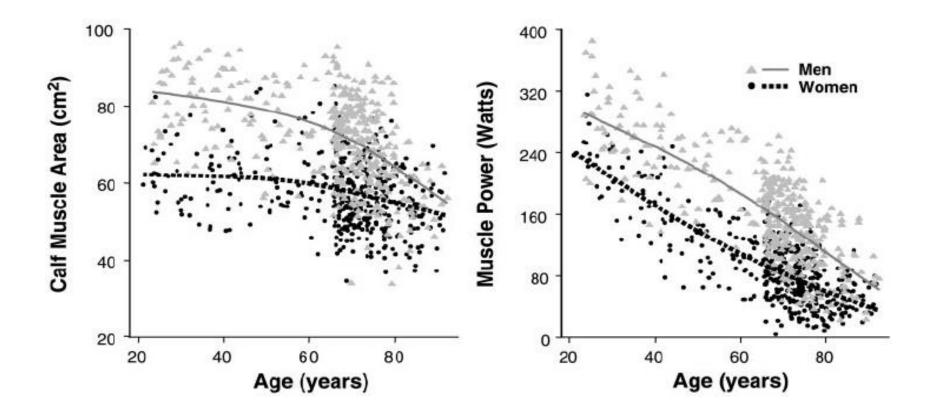
Relationship between age, muscle crosssectional area, and total numbers of fibers




Relationship between age proportion of type 1 fibers and and relative area of type 2 fibers

Lexell J. JGMS 50A, 11-16, 1995

Association between age, BMI and skeletal muscle adipose tissue infiltration



Women

5 Goodpaster B et al, ANYAS; 2000:904:18-24; JAP; 2001;90:2157-2165

Relationship of age, muscle area and muscle power (InCHIANTI)

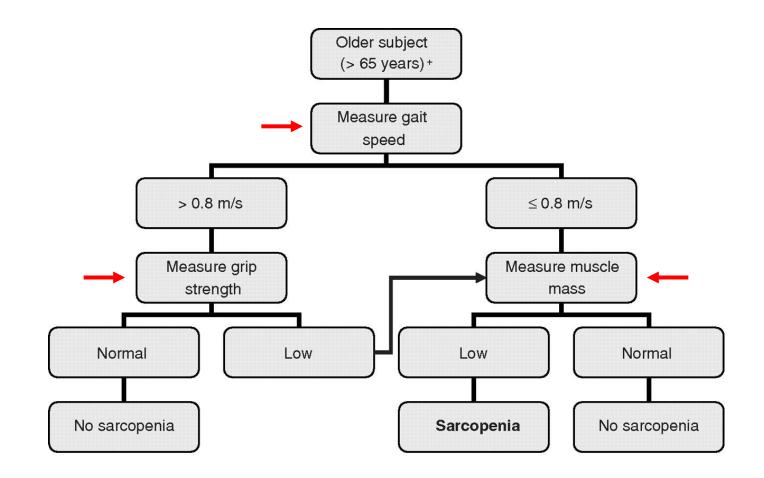
Lauretani, F. et al. J Appl Physiol 95: 1851-60, 2003

Sarcopenia: consensus definitions

> 2010 – Special Interest Group

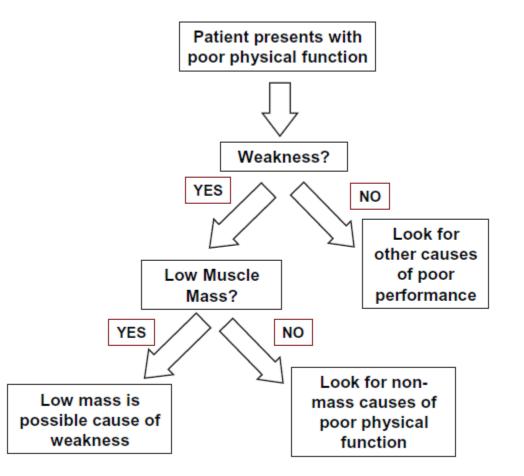
... condition characterized by loss of muscle mass and muscle strength...

> 2010 – European Working Group on Sarcopenia in Older People


...syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life and death...

- 2011 International Working Group on Sarcopenia ...Sarcopenia is the ageassociated loss of skeletal muscle mass and function. Sarcopenia is a complex syndrome that is associated with muscle mass loss alone or in conjunction with increased fat mass....
- 2014 <u>FNIH Sarcopenia Project</u>: ...functional limitation in the presence of weakness as a consequence of reduced skeletal muscle mass...

SIG. 2010: Clinical Nutrition 2010;29:154-159. EWGSOP : Age Ageing 2010;39:412-23. IWGS: JAMDA 2011;12:249-256 FNIH: JGMS 2014;69:547-558

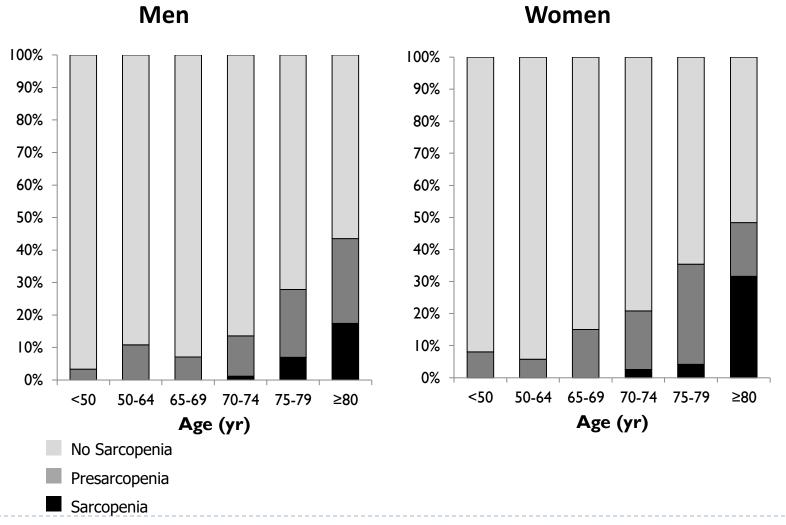

Operational definitions

Consensus	Definition	Method	Criteria
SIG (2010)	Muscle Mass	Not definded	≥2 SD below mean according to gender and race
	Physical function	Walking speed	<0.8 m/s
EWGSOP (2010)	Muscle Mass	DXA; BIA Anthropometry	According to methods and gender
	Strength	Grip strength	According to gender and BMI
	Physical function	Walking speed	≤0.8 m/s
IWGS (2011)	Muscle mass aLM/h ²	DXA	W ≤ 5.67 kg/m² M≤ 7.25 kg/m²
	Physical function	Walking speed	≤1.0 m/s
FNIH (2014)	Physical function	Walking speed	≤0.8 m/s
	Strength	Grip strength	M<26 kg ;W<16 g
	Muscle Mass ALM;ALM _{BMI}	DXA	M < 0.789 W <0.512

Cruz-Jentoft A J et al. Age Ageing 2010;39:412-423

The FNIH sarcopenia project: clinical algorithm

Studensky et al. JGMS 2014;69:547-558

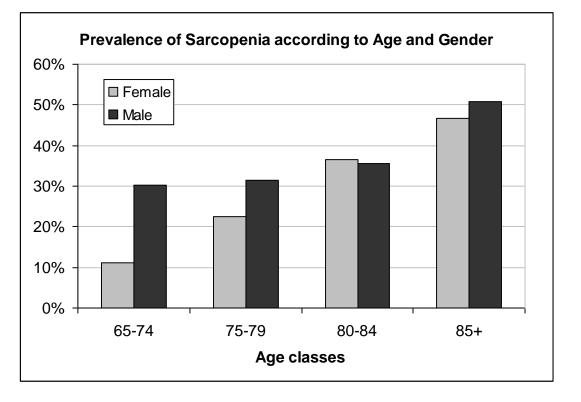

Prevalence of sarcopenia in older adults: Report of the International Sarcopenia Initiative

		Operational Definition		Prevale	ence (%)
	Physical	Muscle		Men	Women
Criteria	Performance	Strength	ALM	(n = 7, 113)	(n = 2,950)
Foundation of NIH Sarcopenia F	Project				
Weakness and low lean mass	_	Grip strength	ALM _{BMI}	1.3	2.3
		Men: <26 kg	Men: <0.789		
		Women: <16 kg	Women: <0.512		
Slowness with weakness	Gait speed: ≤0.8 m/s	Grip strength	ALM _{BMI}	0.5	1.8
and low lean mass		Men: <26 kg	Men: <0.789		
		Women: <16 kg	Women: <0.512		
International Working	Gait speed: <1.0 m/s	—	ALM/ht ²	5.1	11.8
Group			Men: ≤7.23 kg/m ²		
			Women: ≤5.67 kg/m ²		
European Working Group on Sa	rcopenia Older Persons				
Sarcopenia	Gait speed: <0.8 m/s or		ALM/ht ²	5.3	13.3
	Grip strength		Men: $\leq 7.23 \text{ kg/m}^2$		
	Men: <30 kg		Women: $\leq 5.67 \text{ kg/m}^2$		
	Women: <20 kg				
Severe sarcopenia	Gait speed: <0.8 m/s	Grip strength	ALM/ht ²	0.7	2.9
		Men: <30 kg	Men: ≤7.23 kg/m ²		
		Women: <20 kg	Women: $\leq 5.67 \text{ kg/m}^2$		

Note: ALM_{BMI} = ratio of appendicular lean mass over body mass index; ALM/ht² = ratio of appendicular lean mass over height squared.

Cruz-Jentoft A J et al. Age Ageing 2014;43:748-759

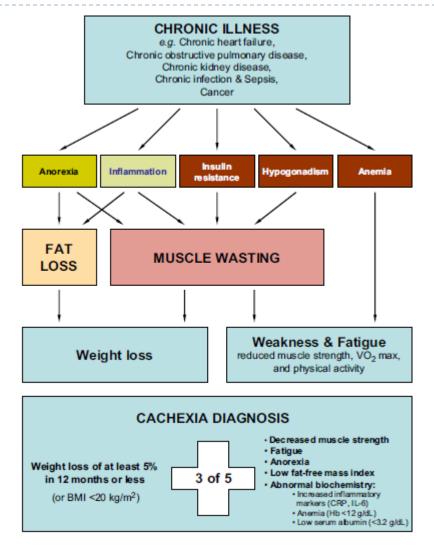
Prevalence of Sarcopenia and pre-sarcopenia: EWGSOP definition, InCHIANTI Study


Volpato S et al. JGMS 2014;69:438-46

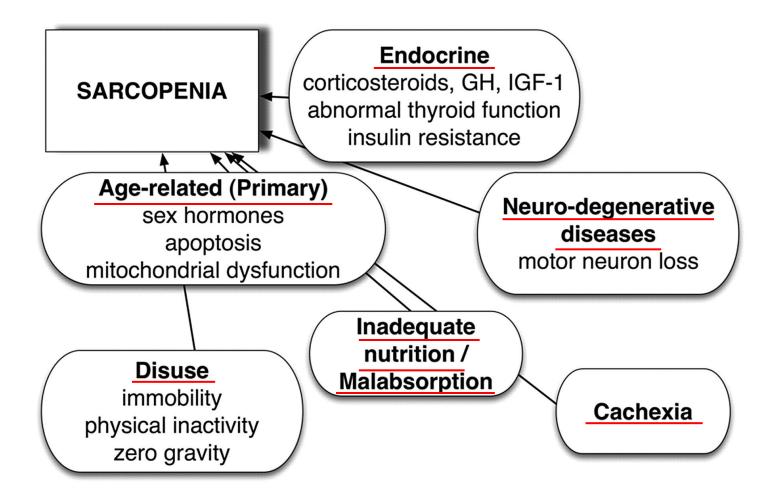
Il Gruppo GLISTEN

Gruppo Lavoro Italiano Sarcopenia – Trattamento e Nutrizione

EWGSOP definition

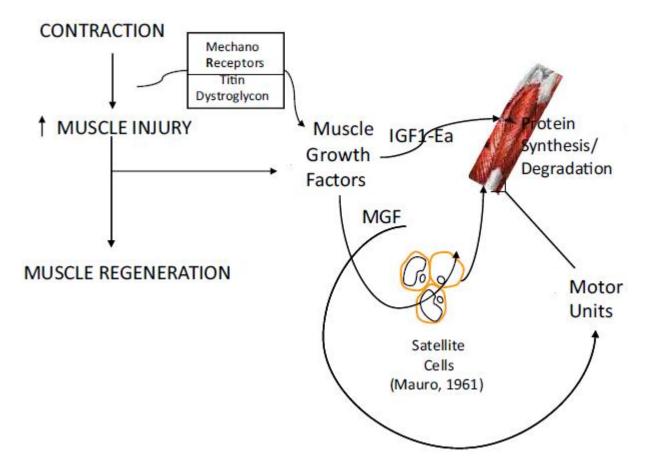

Diagnostic criteria for Cachexia in adults

1. Weight loss $\leq 5\%$ in 12 months in the presence of underlying illness (or BMI <20)

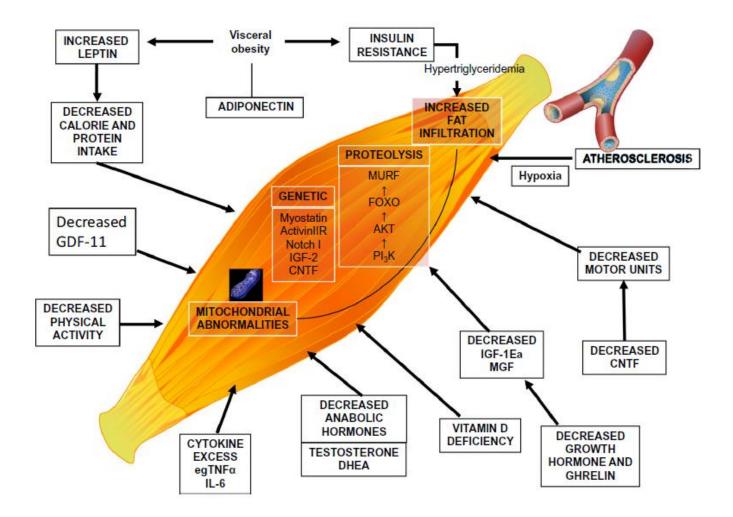

- a) Decrease muscle strength
 b) Fatigue
 c) Anorexia
 d) Low fat-free mass index
 e) Abnormal biochemistry

 - - - Increased inflammatory markers (PCR> 5mg/l)
 - Anemia
 - Low albumin (<3.2 g/dl)

Conceptual representation of the chachexia definition



Evans WJ, et al. Clin Nutr 2008; 27:793-9.


The Pathophysiology of Sarcopenia

Age-realted increased muscle injury with a decrease in muscle regeneration and function

Morley JE. Calcif Tissue Int. 2016; 98:319-333

The Pathophysiology of Sarcopenia

Morley JE. Calcif Tissue Int. 2016; 98:319-333

Current and future options for the prevention and treatment of sarcopenia

Modality	Effect	Side effects
Resistance exercise	Increase muscle mass, strength, and power	Potential for falls; muscle injuries
Protein (essential amino acids)	Increase muscle mass; synergy with exercise to increase muscle strength and power	Minimal increased creatinine levels

Resistance and aerobic exercise

Resistance exercise improved strength and decreased frailty in

very old persons. Fiatarone et al, N Engl J Med 1994; Fiatarone et al, JAMA 1990; Marini et al, Ital J Anat Embryol 2008; Morganti et al, 1995; Stasser B et al, Wien Klin Wochenschr 2009.

- These effects can be maintained for at least | year. Capodaglio et al, Age Ageing 2005; Capodaglio et al, Eur J Appl Physiol 2007.
- Strength training improved distance walked in 6 minutes and gait speed. Morley, JAMDA 2010.
- Resistance exercise increases type II muscle fiber size and improves satellite muscle recruitment in older persons. Harber et al, Am J Physiol Regul Integr Comp Physiol 2009; Snijders et al, Ageing Res Rev 2009.
- Aerobic exercise remodels myofibers and increases muscle strength. van Swearingen et al, J Gerontol A Biol Sci Med Sci 2009.
 - In older persons, aerobic exercise improves gait speed, quality of life years (QALY), and is cost effective. Bulthius et al, Arthritis Rheum 2008; Baker et al, Age Ageing 2007; Mian et al, Eur J Appl Physiol 2007.

Effect of Structured Physical Activity on Prevention of Major Mobility Disability in Older Adults: The LIFE Study Randomized Clinical Trial

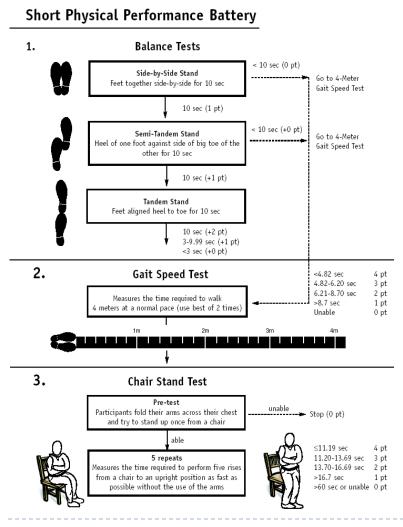
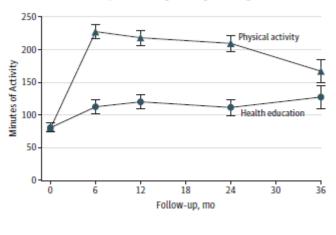
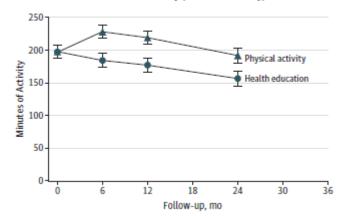


Table 1. Baseline Characteristics of the Participants

	No. (%) ^a			
Characteristic	Physical Activity (n = 818)	Health Education (n = 817)		
Age, mean (SD), y	78.7 (5.2)	79.1 (5.2)		
Women	547 (66.9)	551 (67.4)		
Ethnicity/race				
Hispanic	31 (3.8)	30 (3.7)		
White	604 (73.8)	635 (77.7)		
African American	163 (19.9)	125 (15.3)		
SPPB score				
Mean (SD)	7.4 (1.6)	7.3 (1.6)		
<8	353 (43.3)	378 (46.2)		
400-m walking speed, mean (SD), m/s	0.83 (0.17)	0.82 (0.17)		
BMI, mean (SD)	30.1 (5.7)	30.3 (6.2)		
Walking/weight training activities, mean (SD), min/wk ^b	75.1 (125.6)	86.7 (134.5)		
Median (IQR)	0 (0-105)	30 (0-105)		
Accelerometry of moderate physical activity, mean (SD), min/wk ^c	193.7 (155.3)	202.1 (186.5)		
Median (IQR)	161 (80-257) (n = 590)	153 (85-266) (n = 581)		
3MSE score, 0-100 scale, mean (SD)	91.5 (5.5)	91.6 (5.3)		
Conditions, No./total (%)				
Hypertension ^b	573/813 (70.5)	578/808 (71.5)		
Diabetes ^b	199/815 (24.4)	216/813 (26.6)		
Myocardial infarction ^b	60/815 (7.4)	69/812 (8.5)		
Stroke ^b	57/814 (7.0)	52/814 (6.4)		
Cancer ^b	178/814 (21.9)	192/815 (23.6)		
Chronic pulmonary disease ^b	130/815 (16.0)	123/812 (15.2)		

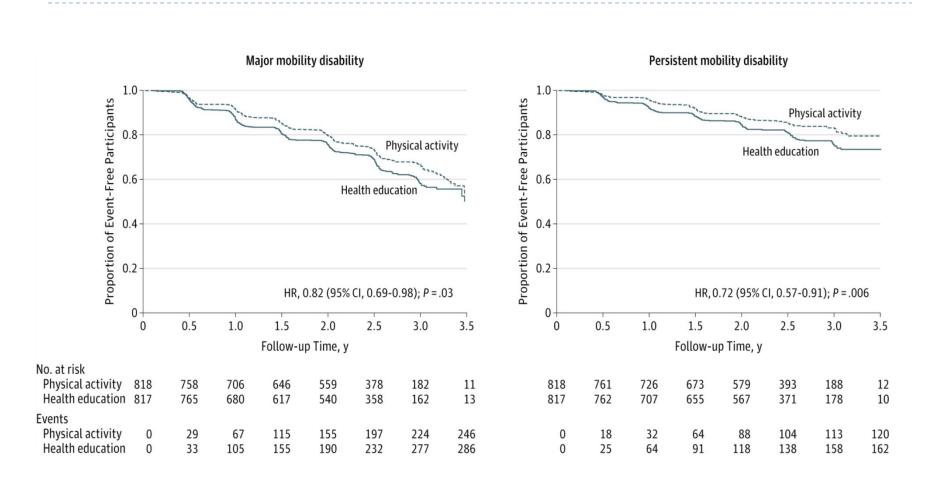

Pahor M. et al JAMA. 2014;doi:10.1001/jama.2014.5616

Effect of Structured Physical Activity on Prevention of Major Mobility Disability in Older Adults: The LIFE Study Randomized Clinical Trial

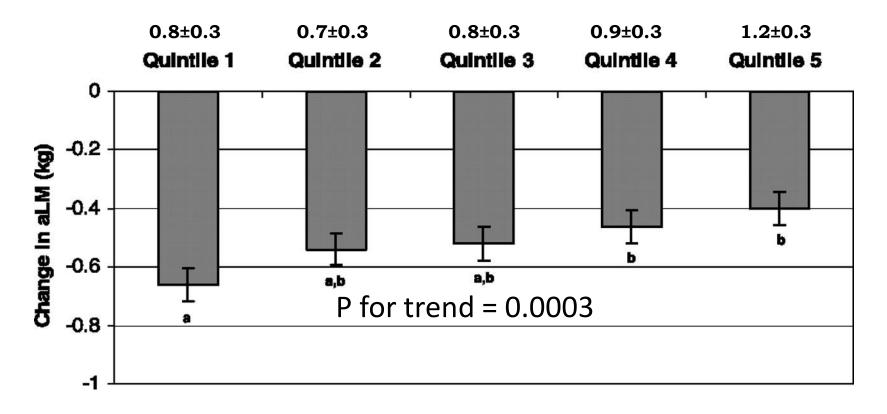

Table 3. Physical Activity Intervention Schedule

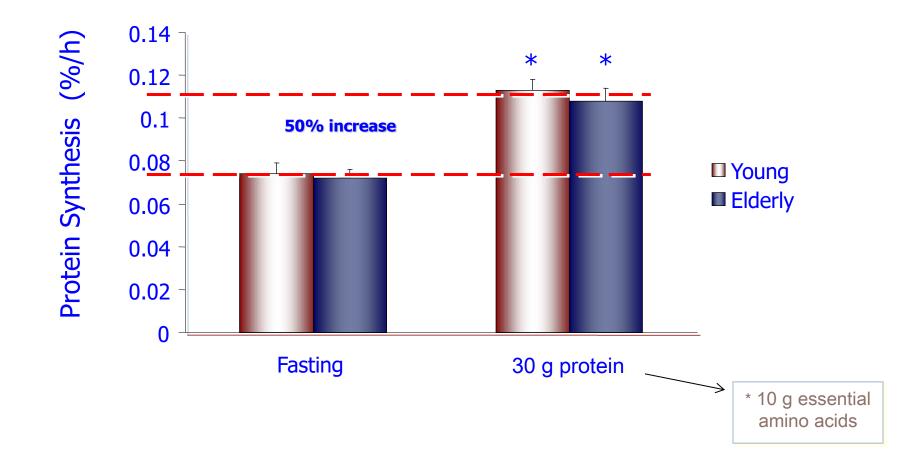
Phase	Center-Based Physical Activity	
Adoption: Weeks 1–52	Two times each week; progressing to 40 min walking, 10 min strength training, 10 min balance	
Maintenance: Weeks 53 to end	Two times each week; progressing to 40 min walking, 10 min strength training, 10 min balance	
Phase	Home-Based Physical Activity	
Adoption: Weeks 1–52	One time per week (weeks 1–4); two times per week (weeks 4–8); up to three to four times per week (weeks 8–52)	
Maintenance: Weeks 53 to end	Up to three to four times per week	

Self-reported walking and weight training activities



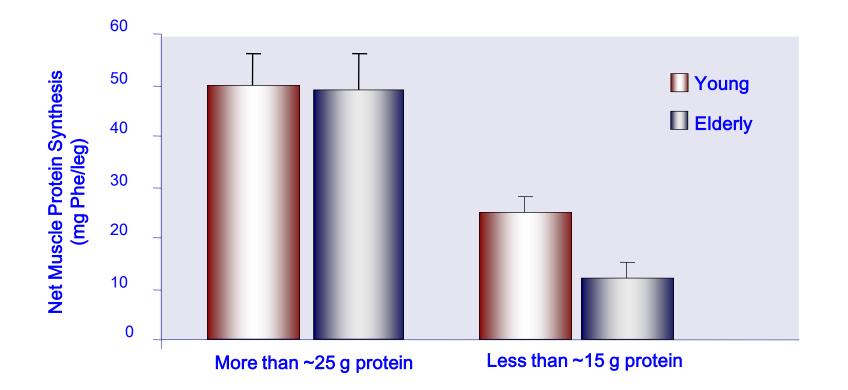
Pahor M. et al JAMA. 2014;doi:10.1001/jama.2014.5616


Effect of Structured Physical Activity on Prevention of Major Mobility Disability in Older Adults: The LIFE Study Randomized Clinical Trial

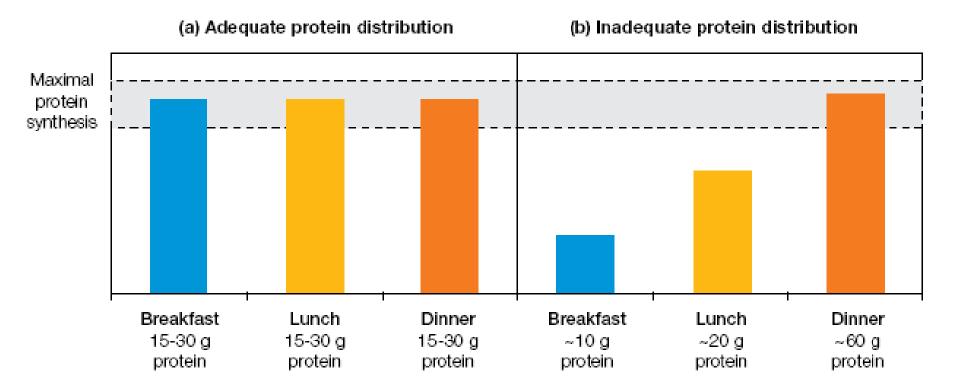

Pahor M. et al JAMA. 2014;doi:10.1001/jama.2014.5616

Dietary protein intake is associated with lean mass change in older adults (HABC Study)

Energy-adjusted total protein intake



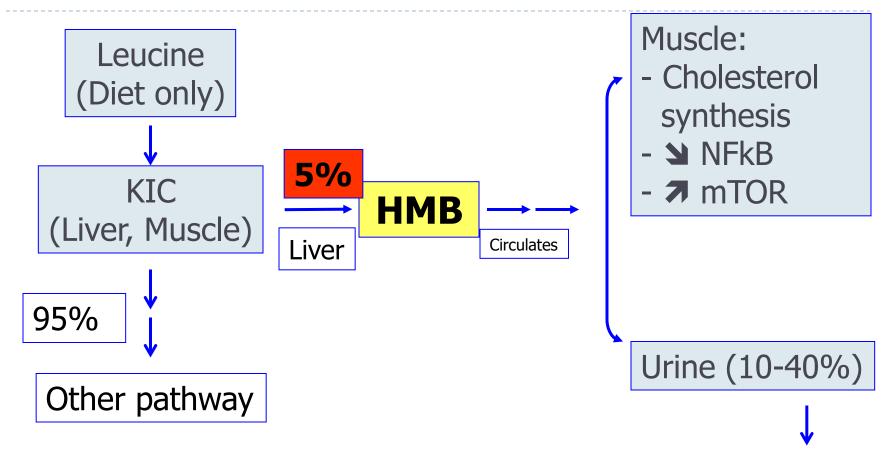
Ageing and muscle protein synthesis in response to protein intake



Symons et. al. AJCN, 2007

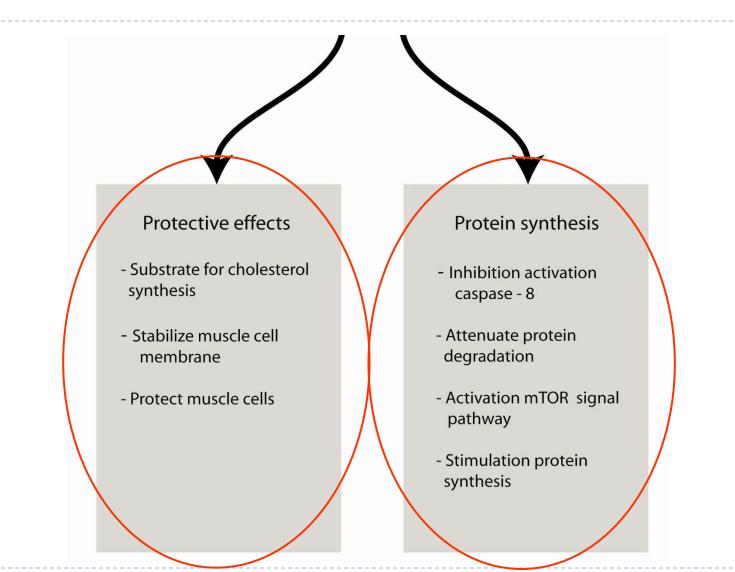
Ageing and muscle protein synthesis in response to protein intake

Protein intake distribution and protein synthesis



Adapted from Paddon-Jones, 2009

Options to optimize post-prandial anabolic action of dietary proteins


- Increase protein intake
 - Age-specific RDAs
- Increase amino acid bioavailability
 - Distribution of protein intake
 - Digestion rate
- Use specific substrates
 - Leucine
 - <u>ß-hydroxy-ß-methylbutyrate (HMB)</u>

Leucine-<u>ß-hydroxy-ß-methylbutyrate</u> Metabolic Pathway

The is an amino acid metabolite that occurs naturally in human muscle cells. Traditionally, HMB has been used by athletes to enhance performance and build muscle mass. Recent studies have focused on the use of HMB to preserve or rebuild muscle mass.

Role of HMB on muscle function

Archives of Gerontology and Geriatrics 61 (2015) 168-175

Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: A systematic review and meta-analysis

Hongmei Wu, Yang Xia, Jin Jiang, Huanmin Du, Xiaoyan Guo, Xing Liu, Chunlei Li, Guowei Huang, Kaijun Niu*

Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China

Effect of HMB supplementation on muscle and fat mass

Author		SMD (95% CI)	Weight (%)
Muscle mass Deutz, N. E. et al 2013 Baier, S. et al 2009 Vukovich, M. D. et al 2001 May, P. E. et al 2002 Flakoll, P. et al 2004 Stout, J. R. et al 2013 (phase I) Stout, J. R. et al 2013 (phase II) Overall ($I^2 = 0.0\%$, P = 0.438)		 − 0.36 (-0.56, 1.28) 0.52 (0.06, 0.97) 0.13 (-0.58, 0.83) → 0.39 (-0.60, 1.39) 0.46 (-0.10, 1.03) − 0.64 (0.03, 1.26) −0.32 (-0.98, 0.34) 0.35 (0.11, 0.59) 	6.93 28.29 11.66 5.87 18.39 15.51 13.35 100.00
Fat mass			
Deutz, N. E. et al 2013 Baier, S. et al 2009 Vukovich, M. D. et al 2001 May, P. E. et al 2002 Flakoll, P. et al 2004 Stout, J. R. et al 2013 (phase I) Stout, J. R. et al 2013 (phase II) Overall ($I^2 = 0.0\%$, P = 0.741)		-0.23 (-1.15, 0.68) -0.04 (-0.48, 0.41) -0.44 (-1.16, 0.27) -0.21 (-1.21, 0.78) -0.30 (-0.86, 0.26) 0.18 (-0.42, 0.78) 0.26 (-0.40, 0.92) -0.08 (-0.32, 0.16)	6.86 28.68 11.17 5.84 18.33 15.97 13.15 100.00
-1.39	0	1.39	

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Randomized control trials

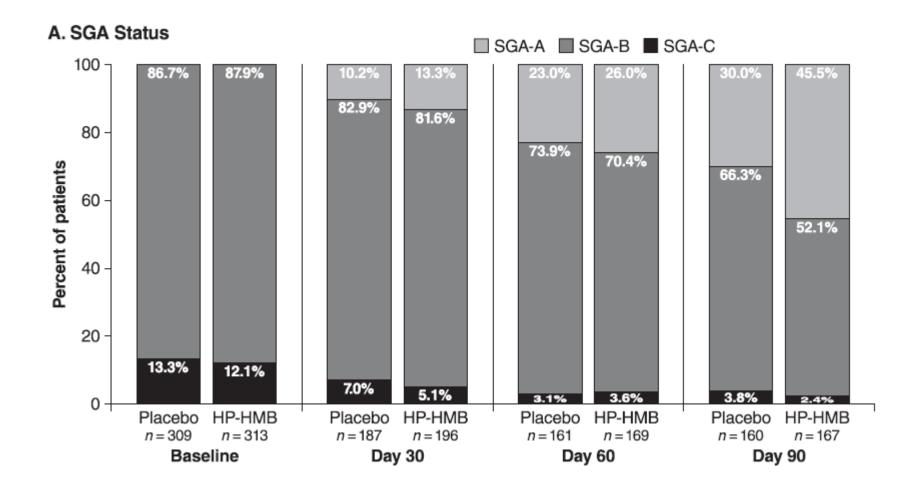
Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial

CLINICA

Nicolaas E. Deutz^{a, *}, Eric M. Matheson^b, Laura E. Matarese^c, Menghua Luo^d, Geraldine E. Baggs^d, Jeffrey L. Nelson^d, Refaat A. Hegazi^d, Kelly A. Tappenden^e, Thomas R. Ziegler^f, on behalf of the NOURISH Study Group

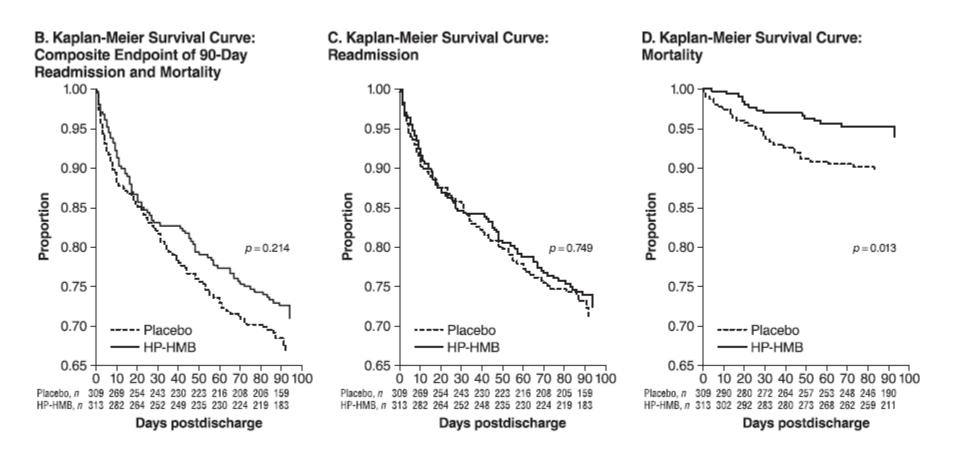
HP-HMB was a specialized, nutrient-dense ready-to-drink liquid with 350 kcal plus:

✓ 20 g protein,

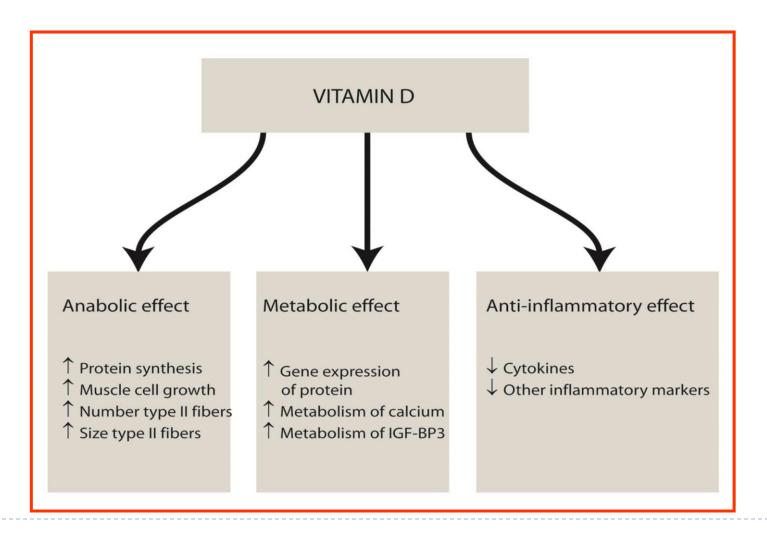

✓ 11 g fat,

✓ 44 g carbohydrate,

✓ 1.5 g calcium-HMB,


✓ 160 IU vitamin D and other essential micronutrients

HP-HMB and Nutritional (SGA) status



Effect on hospital readmission and mortality

Role of Vitamin D on muscle function

The Effects of Vitamin D on Skeletal Muscle Strength, Muscle Mass, and Muscle Power: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Studyname	5	Natistics for ea	chstudy			St <u>d diff inn</u>	means and 95%	6a
	Std diff in means	Lover	Upper	pValue				
Banker et al. 2012	0,099	-0.778	0,976	0,824	1	1 -		
Binder E. 1995	0,030	-0,759	0,820	0,940		<u> </u>		
Bischoff et al. 2003	0,123	-0.376	0,622	0,629				-
Brunner et al. 2008	0,026	-0.055	0,107	0,526				
Buncut et al. 2006	0,183	-0,384	0,750	0,527				- 1
Carrillo et al. 2012	0,087	-0,738	0,911	0,837		<u> </u>		<u> </u>
Close et al. 2012	1,353	-0.021	2,727	0,054				
Dhesi et al. 2004	0,093	-0.240	0,425	0,585				
El-Hajj Fuleihan et al. 2006	0.226	-0.138	0.589	0,224				-
Gendenning et al. 2012	-0.028	-0.178	0.122	0,715				
Goswami et al. 2012	-0.257	-0.682	0.167	0.235		<u> </u>		
Gradvet al.	-0,403	-0.803	-0.003	0,048				
Gupta et al. 2010	0,300	-0.324	0.923	0,346				<u> </u>
Hara et al. 2013	0,203	-0.203	0,609	0,328			-+=-	-
Homickxet al. 2012	0,455	-0.113	1,022	0,116				
Janssen et al. 2010	0,126	-0.343	0,595	0,599				-
Kampman et al. 2012	-0,042	-0.518	0,434	0,863				
Kennyet al. 2003	-0,038	-0.544	0,469	0,884		·		
Knutsen et al. 2014	-0,179	-0.504	0,146	0,280				
Kukuljan et al. 2009	0,476	0,055	0,897	0,027				- I
Latham et al. 2003	0,000	-0,251	0,251	1,000			-	
Pfeifer et al. 2009	0,228	-0.025	0,480	0,078			- -	- 1
Sato et al. 2005	2,741	2,183	3,298	0,000				
Smedshaug et al. 2007	-0,308	-0.818	0,202	0,237		<u> </u>		
Songpatanasilp et al. 2009	0,786	0,158	1,414	0,014				
Verhaar et al. 2000	0,481	-0.285	1,246	0,218				
Ward et al. 2010	0,273	-0,191	0,737	0,249			-+	-
Wood et al. 2014	-0,166	-0,446	0,115	0,248				
Zhuet al. 2010	0,038	-0,205	0,281	0,759	1	1	-	
	0,170	0,031	0,310	0,017			•	
					-2,00	-1,00	0,00	1,00

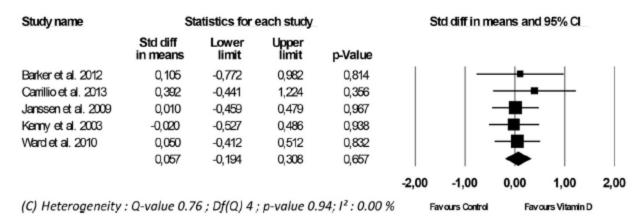
Effect of vitamin D supplementation on global muscle strength

(A) Heterogeneity : Q-value 125.37 ; Df(Q) 28 ; p-value 0.001; I² : 77.67

Beaudart et al. JECM 2014;99:4336-45

Favours Vitamin D

Favours Control


2,00

The Effects of Vitamin D on Skeletal Muscle Strength, Muscle Mass, and Muscle Power: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Effect of vitamin D supplementation on muscle mass Study name Statistics for each study Std diff in means and 95% Cl Upper limit Std diff Lower p-Value in means limit Bunout et al. 2006 0.064-0.502 0.629 0.826 Carrillo et al. 2013 0,431 -0,333 -1,163 0,497 Et-Hajj Fuleihan et al. 2005 0,408 0,035 0,781 0,032 0.055 0.796 Kukuljan et al. 2009 -0.361 0.471 Manios et al. 2009 -0,034 -0,487 0,419 0,882 0,220 0,624 Wood et al. 2014 -0,073 -0,366 0.058 -0.118 0,233 0.520 -1,00 0,50 1,00 -0.50 0.00 Favours Control Favours Vitamin D

(B) Heterogeneity : Q-value 5.17 ; Df(Q) 5 ; p-value 0.39; I² : 3.34

Effect of Vitamin D supplementation on muscle power

Beaudart et al. JECM 2014;99:4336-45

Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial

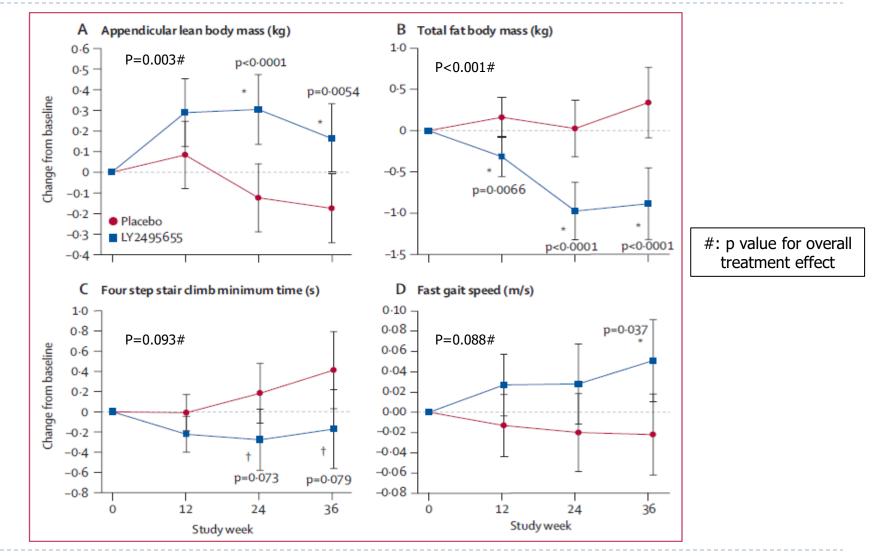
Design: A multicenter, randomized, controlled, double-blind, 2 parallel-group trial among 380 sarcopenic primarily independent-living older adults with Short Physical Performance Battery (SPPB; 0-12) scores between 4 and 9, and a low skeletal muscle mass index. The active group (n = 184) received a vitamin D and leucine-enriched whey protein nutritional supplement to consume twice daily for 13 weeks. The control group (n = 196) received an iso-caloric control product to consume twice daily for 13 weeks.

<u>Primary outcomes</u> of <u>handgrip strength and SPPB score</u>, and secondary outcomes of chair-stand test, gait speed, balance score, and appendicular muscle mass (by DXA) were measured at baseline, week 7, and week 13 of the intervention.

Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial

	Mean (SD)	an (SD) Change From Baseline, Mean (SD)		Estimated Between-Group	<i>P</i> *
	Baseline	Week 7	Week 13	DifferenceMean (95% CI)Active – Control	
Handgrip strength, l	kg				
Active	20.9 (7.9)	0.20 (3.2)	0.79 (3.6)‡	$0.30^{\$} (-0.46 - 1.05)$.44
Control	20.6 (7.5)	0.34 (2.8)	0.54 (3.2)		
SPPB					
Active	7.5 (1.9)	0.50 (1.26)	0.86 (1.38)**	0.11 [§] (-0.21-0.42)	.51
Control ^{††}	7.5 (2.0)	0.4			
Chair-stand time, s [#]			p = 0.045	Control (n=135) _{0 -0.19)}	
Active	17.1 (15.2, 21.2)				.018
Control	17.6 (14.6, 20.6)			Active (n=124)	
Balance test [¶]					
Active	3.0 (2.0, 4.0)	0.3			.89
Control ^{††}	3.0 (2.0, 4.0)				
Gait speed, m/s	0.9 (0.3)			0.04)	40
Active [¶]	0.8 (0.2)	<u> </u>		0.04)	.46
Control***	0.8 (0.2)				
		5 0.2			
		· ·			
		0.1			
		0.1			
		0.0			
		Appen	dicular muscle mass *		
		11			

Current and future options for the prevention and treatment of sarcopenia


Modality	Effect	Side effects
Resistance exercise	Increase muscle mass, strength, and power	Potential for falls; muscle injuries
Protein (essential amino acids)	Increase muscle mass; synergy with exercise to increase muscle strength and power	Minimal increased creatinine levels
Testosterone	Increase muscle mass, strength, power, and function	Fluid retention; increased hematocrit; short term worsening of sleep apnea; effects on prostate cancer; possible increase in cardiovascular events
Selective androgen receptor modulators (SARMS)	Increase muscle mass; small increase in power	Increased cardiac failure
Growth hormone	Increase nitrogen retention; increase muscle mass	Arthralgia; muscle pain; edema; carpal tunnel syndrome; hyperglycemia
Ghrelin agonists	Increased muscle mass and appetite	Fatigue; atrial fibrillation; dyspnea
Myostatin antibodies	Increased lean body mass and handgrip	Urticaria; aseptic meningitis; diarrhea; confusion; fatigue
Activin 11R antagonists	Increase thigh muscle volume, muscle mass, and 6-min walk distance	Acne; involuntary muscle contractions
Angiotensin converting enzyme inhibitor (perindopril)	Increased distance walked; decreased hip fracture	Hypotension; hyperkalemia; muscle cramps; numbness
Espindolol (B ₁ /B ₂ adrenergic receptor antagonist)	Maintains muscle mass; increased hand grip strength	?
Fast skeletal muscle troponin activators (Tirasemtiv)	Improves muscle function	?

Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial

Clemens Becker, Stephen R Lord, Stephanie A Studenski*, Stuart J Warden, Roger A Fielding, Christopher P Recknor, Marc C Hochberg, Serge L Ferrari, Hubert Blain, Ellen F Binder, Yves Rolland, Serge Poiraudeau, Charles T Benson, Stephen L Myers*, Leijun Hu*, Qasim I Ahmad*, Kelli R Pacuch, Elisa V Gomez, and Olivier Benichou, on behalf of the STEADY Group†

	Placebo group (n=99)	LY2495655 group (n=102)
Age (years)	83 (75-99)	82 (75-96)
Women	65 (66%)	75 (74%)
White	98 (99%)	101 (99%)
Weight (kg)	69.3 (13.7)	69.1 (13.4)
Height (cm)	161.4 (10.2)	161.3 (10.6)
Appendicular lean body mass/height ²	6.02 (0.8)	6.1 (0.8)
Sarcopenia*	29 (31%)	25 (26%)
BMI (kg/m²)	26.5 (4.0)	26.4 (3.8)
Number of pre-existing conditions	8.8 (6.9)	11.5 (8.1)
Number of concomitant drugs (mean per patient)	8.6 (4.9)	9.3 (5.1)
Number of falls between visit one (screening) and visit two (randomisation; mean per patient)	0.15	0.23
Previous fractures (total number per group)	61	105
Number of patients with previous fractures (%)	32 (33%)	41 (40%)
Pre-existing osteoporosis† (%)	33 (33%)	48 (47%)
Patients with 25-hydroxyvitamin D <20 ng/mL before the first dose (%)	20 (20%)	28 (28%)
Chair rise test without arms (s)	16.4 (4.9)	16.8 (5.8)
Patients performing chair rise test without arms (%)	78 (79%)	76 (75%)
Hand grip strength (kg)	19·9 (7·7)	20.0 (7.2)

Change from baseline in body composition and performance-based measures

Lancet Diab Endocr 2015;3:948-57

Myostatin antibody in older weak fallers: a proof-ofconcept randomised, phase 2 trial: <u>Adverse Events</u>

	Placebo (N=99)	315 mg LY (N=102)	p-value
Deaths	0	1 (1%)	1.000
Serious adverse events	18 (18%)	26 (26%)	0.235
Early treatment discontinuation	14 (14%)	20 (20%)	0.351
Adverse events leading to treatment discontinuation	6 (6%)	10 (10%)	0.436
Injection site reactions			
Mild	8 (8%)	22 (22%)	<0.001*
Moderate	1 (1%)	8 (8%)	
Severe	0	1 (1%)	
Patients with ≥1 fracture	6 (6%)	10 (10%)	0.403
Patients with ≥1 TEAE considered by investigators as possibly related to study drug	23 (23%)	42 (41%)	0.007
All TEAEs considered by investigators as possibly related to	o study drug (by	/ frequency and a	lphabetic order):
Injection site pain	5 (5%)	20 (20%)	0.002
Blood creatine phosphokinase increased	0	5 (5%)	0-060
Fatigue	1 (1%)	3 (3%)	0.621
Injection site bruising	0	4 (4%)	0.121
Injection site erythema	1 (1%)	3 (3%)	0.621
Rash	0	4 (4%)	0.121
Diarrhoea	1 (1%)	2 (2%)	1.000
Injection site rash	0	3 (3%)	0.246
Anaemia	2 (2%)	0	0.241
Constipation	0	2 (2%)	0.498
Dysgeusia	2 (2%)	0	0.241

