FESTIVAL DELLE SCIENZE INFETTIVOLOGICHE

FERRARA 20 - 21 SETTEMBRE 2018 SALA IMBARCADERO CASTELLO ESTENSE LE INFEZIONI VIRALI STORICHE, SARÀ POSSIBILE ERADICARLE?

Francesca Ceccherini-Silberstein

HCV dal punto di vista virologico

Università degli Studi di Roma "Tor Vergata" Cattedra di Virologia

Ferrara, 20 Settembre 2018

HCV discovery: one of the most significant biomedical breakthroughs in the last 25 years

Michael Houghton

SCIENCE, VOL. 244

21 APRIL 1989

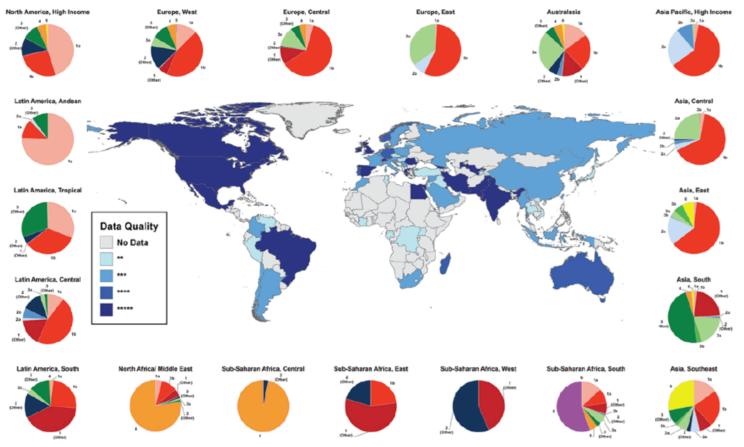
Isolation of a cDNA Clone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis Genome

QUI-LIM CHOO, GEORGE KUO, AMY J. WEINER, LACY R. OVERBY, DANIEL W. BRADLEY, MICHAEL HOUGHTON

21 APRIL 1989

SCIENCE, VOL. 244

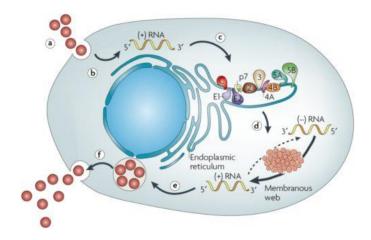
An Assay for Circulating Antibodies to a Major Etiologic Virus of Human Non-A, Non-B Hepatitis


G. KUO, Q.-L. CHOO, H. J. ALTER, G. L. GITNICK, A. G. REDEKER, R. H. PURCELL, T. MIYAMURA, J. L. DIENSTAG, M. J. ALTER, C. E. STEVENS, G. E. TEGTMEIER, F. BONINO, M. COLOMBO, W.-S. LEE, C. KUO, K. BERGER, J. R. SHUSTER, L. R. OVERBY, D. W. BRADLEY, M. HOUGHTON

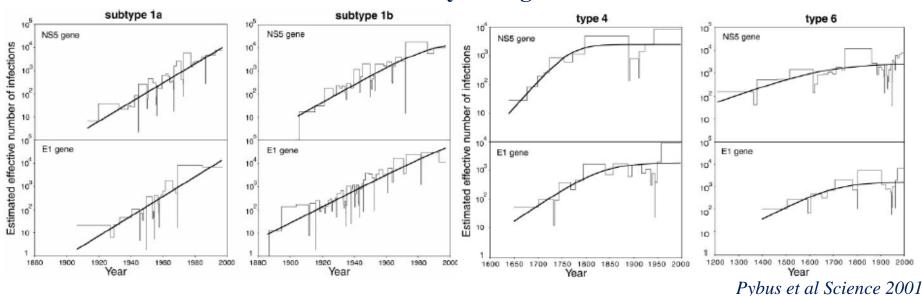
This discovery has facilitated the development of effective diagnostics, blood screening tests and the elucidation of promising drug and vaccine targets to control this global pathogen and save the lives of millions of people around the world....

Hepatitis C is one of the most pressing health emergencies worldwide

The global prevalence of viremic HCV infection has been estimated at 1*-3%, which equates to 62*-170 million people

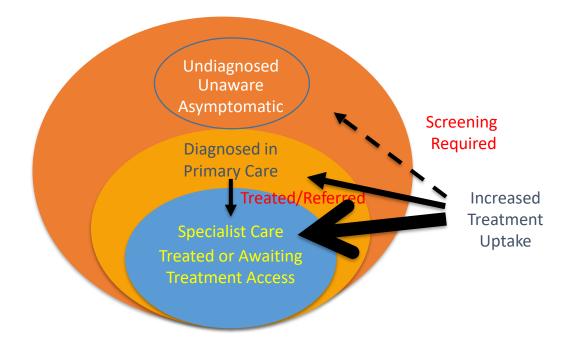

>350,000 mortality cases each year for HCV chronic disease related

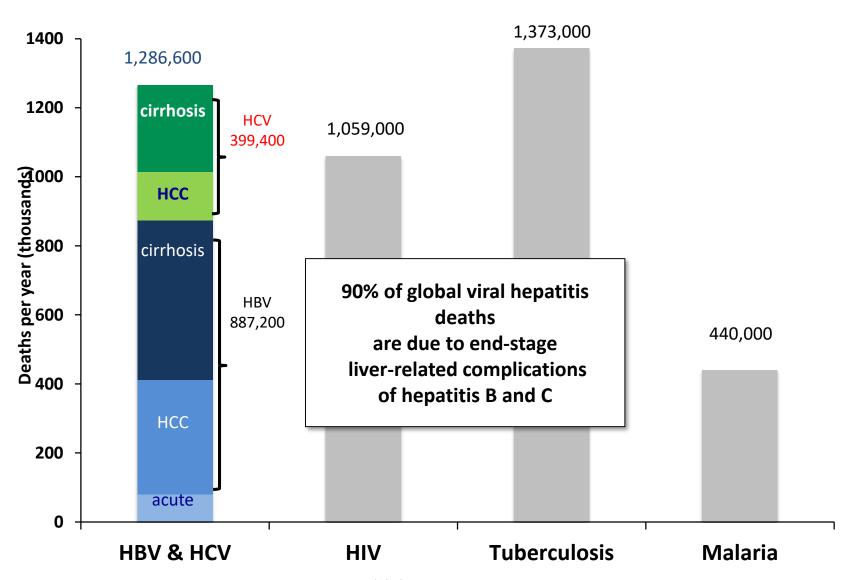
*Manns et al Nature Rev 2017


Messina JP, Hepatology 2014

HCV Flavivirus (genus epacivirus)

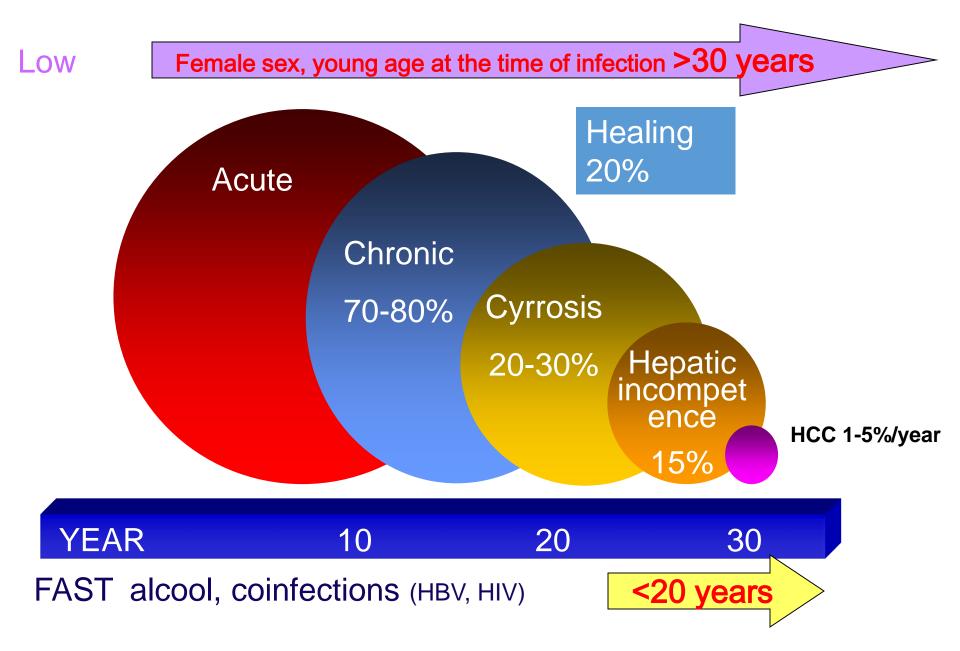
Identified in 1989 (nonA-nonB) cloned and sequenced.


The origin of the primate Flaviviridae could be as ancient as the differentiation of primate species some 35 million years ago. HCV could have been coevolving with human populations during their migration out of Africa within the past 100,000 to 150,000 years, **but the current HCV genotypes appeared much more recently**. A study suggested that types 6 and 4 could have originated 700 years and 350 years ago, respectively, whereas **subtypes 1a and 1b could have arisen less than 100 years ago**.

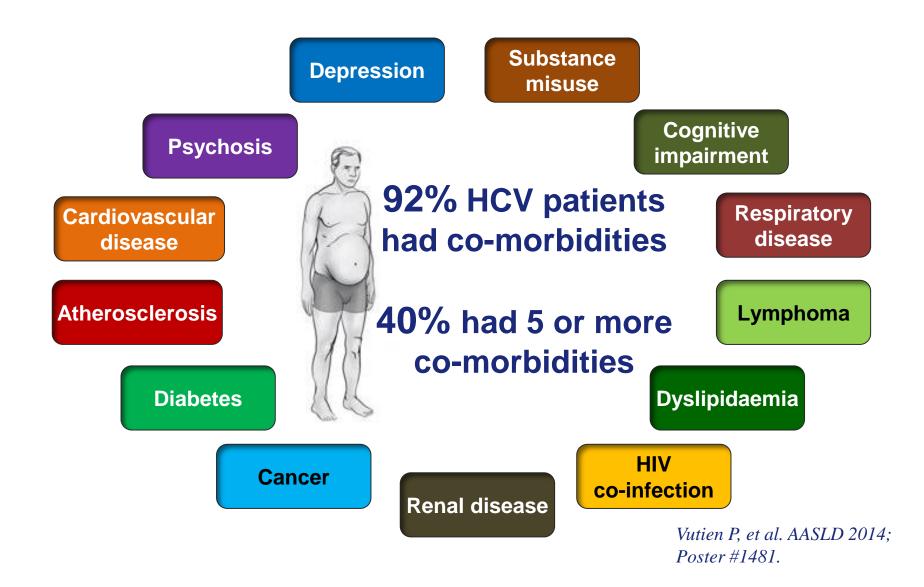

HCV Population

The number of chronically infected persons worldwide is estimated to be about 62-170 million, but most are unaware of their infection.

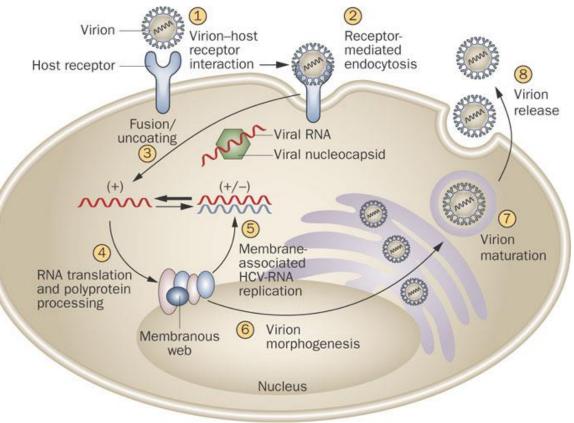
HCV prevalence and incidence data are needed to analyse the magnitude of the pandemic in different regions and to design public health interventions.



The burden of viral liver disease



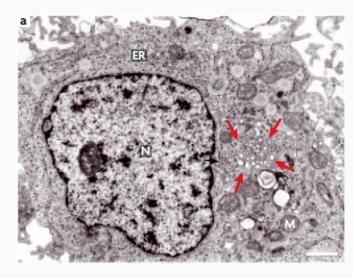
WHO 2017 Global Hepatitis Report


HCV Natural history

Co-morbidities in HCV patients are relevant - bringing potential for competing risks

The long-term persistence of HCV infection is unique among RNA viruses that replicate without a DNA form

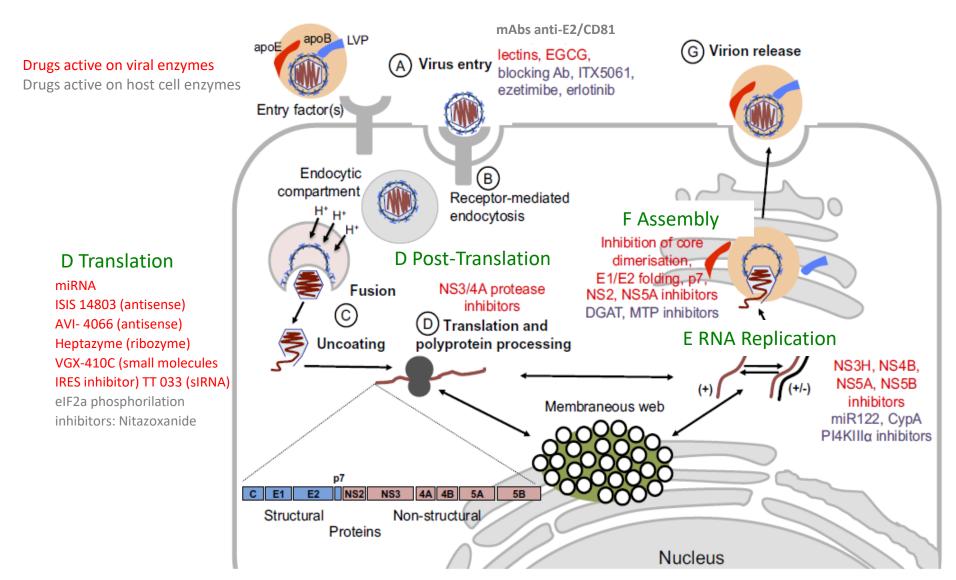
•Unlike DNA viruses or retroviruses that are classically associated with latency no episomial or integrated form of HCV has been demostrated


•HCV replication occurs only in cytoplasm

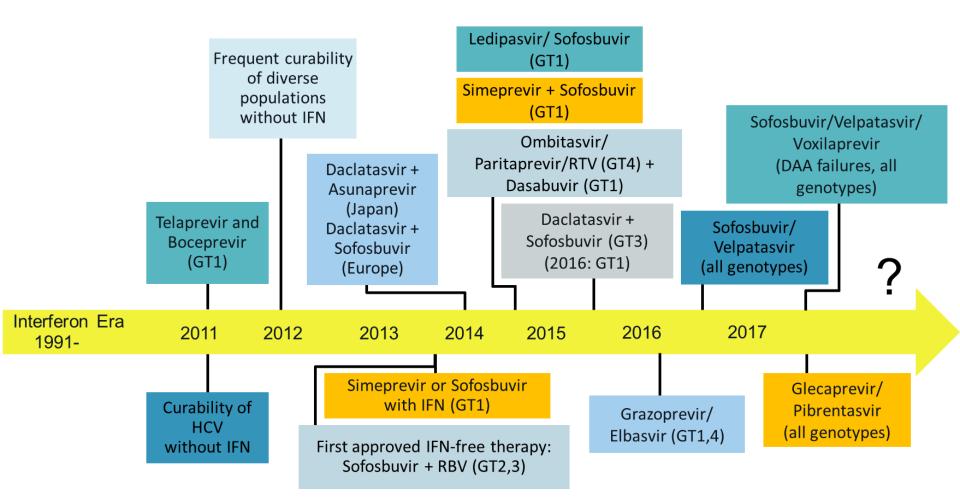
Pereira A A and Jacobson I M Nat Rev Gastroenterol Hepatol, 2009

HIV, HBV and HCV share several biological similarities, but ...

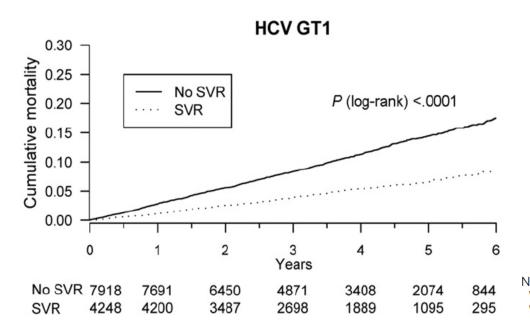
Differently from HIV and HBV:


- HCV replication occurs only in cytoplasm
- Viral genome is not archived into the genome of infected cells

Moradpour D et al., Nature 2007

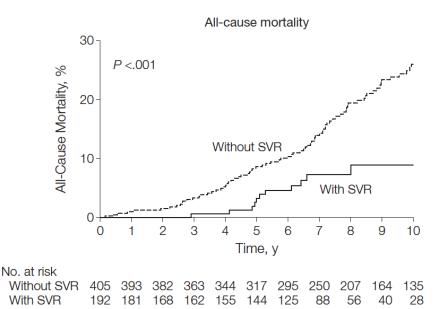

... This makes HCV curable!!!!

The better knowledge of HCV replication cycle allowed the identification of several targeted drugs



Ploss A Gut 2012

The evolution of HCV therapy


The elimination of the virus reduces mortality

SVR reduces mortality risk for each genotype:

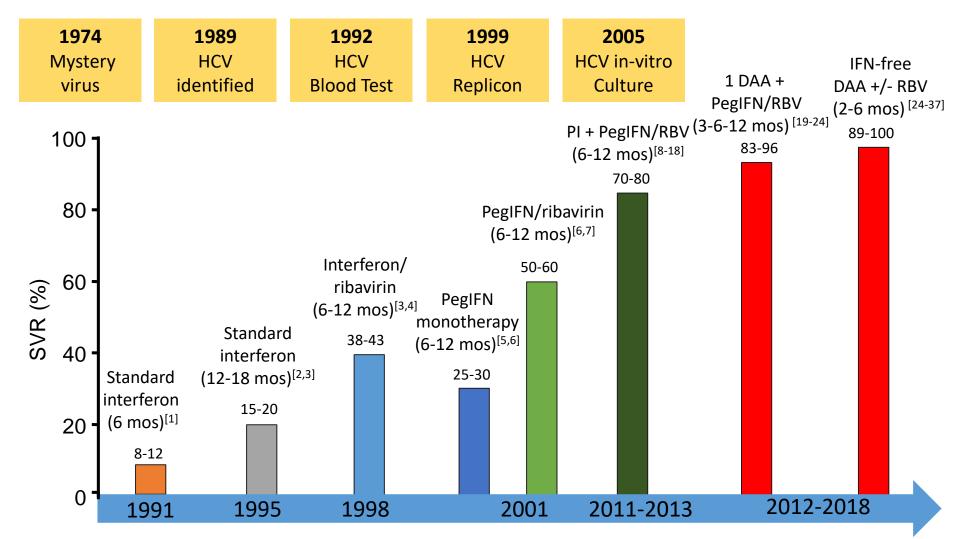
Genotype-1 hazard ratio, 0.70; P < .0001</th>12,166 patients, SVR 35%Genotype-2 hazard ratio, 0.64; P = .0062904 patients, SVR 72%Genotype-3 hazard ratio, 0.51; P = .00021794 patients, SVR 62%

Backus L, et al CGH 2011

SVR reduces mortality in patients with advanced hepatic fibrosis or cirrhosis (Ishak score 4-6)

192 patients (36%) SVR

10-year cumulative incidence rate of liver-related mortality or transplantation:


1.9% (95% CI, 0.0%-4.1%) with SVR

27.4% (95% CI, 22.0%-32.8%) without SVR

(P < .001) Van der Meer AJ, et al JAMA 2012

Patients who achieve SVR have substantially improved qualities of life, which include physical, emotional, and social health.

The standard of care for HCV patients has greatly improved

1. Carithers RL Jr., et al. Hepatology. 1997;26(3 suppl 1):835-885. 2. Zeuzem S, et al. N Engl J Med. 2000;343:1666-1672. 3. Poynard T, et al. Lancet. 1998;352:1426-1432. 4. McHutchison JG, et al. N Engl J Med. 2012;347:975-982. 7. Manns MP, et al. Lancet. 2001;358:958-965. 8. Poordad F, et al. N Engl J Med. 2011;364:1195-1206. 9. Jacobson IM, et al. N Engl J Med. 2011;365:1014-1024. 11. Jacobson IM, et al. A Engl J Med. 2011;365:1014-1024. 11. Jacobson IM, et al. 64th Annual Meeting of the American Association for the Study of Liver Diseases, 1-5 November 2013, Washington, DC. 12. Zeuzem S, et al. Gastroenterology 2014;144:S-151. 14. Jensen D, et al. 64th Annual Meeting of the American Association for the Study of Liver Diseases, 1-5 November 2013, Washington, DC. 15. Jacobson I, et al. 64th Annual Meeting of the American Association for the Study of Liver Diseases, 1-5 November 2013, Washington, DC. 16. Marcellin P, et al. Gastroenterology 2012;145:790-800e3. 17. Bronowicki JP, et al. Antiviral Ther 2013;18:85-93. 18. Manns MP, et al. Annual Meeting of the American Association for the Study of Liver Diseases, 1-5 November 2013, Washington, DC. 15. Jacobson IM, et al. Hepatology 2012;56:884-93. 19. Hezode C, et al. Hepatology 2012;56:583-44. 20. Dore G, et al. J Hepatol 2013;58:5570-1. 21. Lawitz E, et al. Gastroenterology 2013;13:13:401-8. 22. Kowldev KV, et al. Lancet 2013;381:2100-7. 26. Zeuzem S, et al. N Engl J Med 2013;368:1878-87. 25. Jacobson IM, et al. N Engl J Med 2013;368:1878-87. 25. Jacobson IM, et al. N Engl J Med 2013;368:1878-87. 25. Jacobson IM, et al. N Engl J Med 2013;368:1878-87. 2012;56:584-93. 19. Hezode C, et al. Hepatology 2012;56:58570-1. 21. Lawitz E, et al. Gastroenterology 2012;56:5881-93. 19. Lawote C, et al. Hepatology 2012;56:58570-1. 21. Lawitz E, et al. A Engl J Med 2013;368:1878-87. 25. Jacobson IM, et al. N Engl J Med 2013;368:1878-87. 25. Jacobson IM, et al. N Engl J Med 2013;368:1878-77. 26. Zeuzem S, et al. N Engl J Med 2013;368:1878-77. 26. Jacobson IM, et al. N Engl J Me

Overall efficacy of different anti-HCV treatments in Italian real-life practice is 95-98%

Failure rate following the first DAA regimen in patients with advanced disease is similar to or lower than that reported in clinical trials (3.6%), although the majority of patients were treated with suboptimal regimens.

Table 3. Failure rates following the first DAA regimen, by HCV genotype and treatment regimen in patients who completed the 12 weeks post treatment evaluation (n = 3,830 patients).

	Overall	HCV genotype N. of failures/N. of treated patients (%)							
DAA regimen	N. of failures/N. of treated patients (%)	1a	1b	2	3	4	5		
	139/3830 (3.6)]							
SOF+RBV	68/710 (9.6)	5/15 (33.3)	20/56 (35.7)	8/499 (1.6)	32/132 (24.2)	3/8 (37.5)	-		
SOF+SIM±RBV	38/683 (5.6)	8/99 (8)	24/520 (4.6)	1/2 (50)	1/1 (100)	3/60 (5)	1/1 (100)		
SOF+LDV±RBV	16/1002 (1.6)	3/200 (1.5)	10/752 (1.3)	-	0/1 (0)	3/44 (6.8)	0/5 (0)		
3D±RBV	9/894 (1)	3/86 (3.5)	6/806 (0.7)	-	-	0/2 0	-		
2D+RBV	2/64 (3.1)	-	-	-	-	2/59 3.4%	0/5 (0)		
SOF+DCV±RBV	6/471 (1.3)	0/47 0	1/115 (0.9)	0/55 (0)	5/244 (2)	0/10 (0)			
SIM+DCV	0/6 (0)	-	0/6 (0)	-	-	-	-		

https://doi.org/10.1371/journal.pone.0185728.t003

Data on HCV genotype, liver disease severity, and first and second line DAA regimens were prospectively collected in consecutive patients who reached the 12-week post-treatment and retreatment evaluations from January 2015 to December 2016 in 23 of the PITER network centers.

Treatment of chronic Hepatitis C: changing the horizon

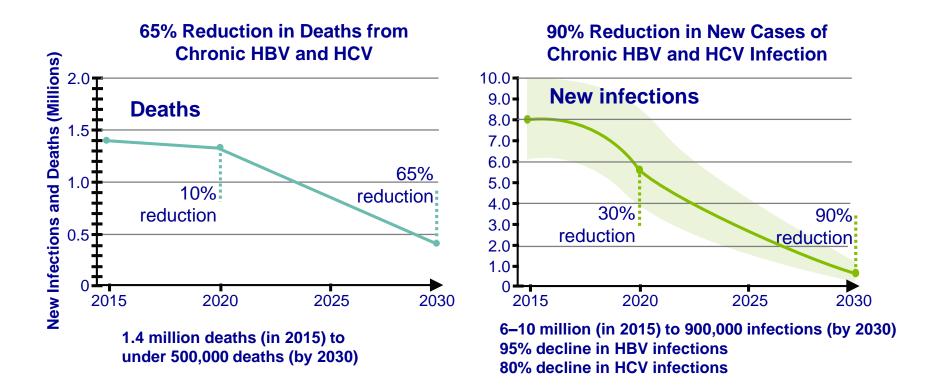
High anti-viral effect: 90-95% Great possibility to use DAAs across all spectrum of the disease Mild-to-moderate-advanced decompensated-pre / post-transplant

Aim at individual level

Abolishing liver disease progression Regression of the hepatic damage Reducing liver and non-liver complications At individual level: treat infection/liver disease

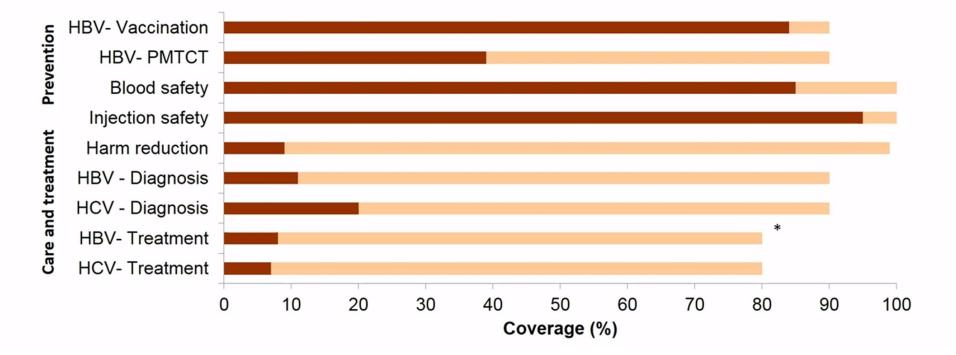
Aim at community level

Reduce (abolish) the spread of HCV infection Reduce disease burden Elimination of HCV infection At community level: treating infection; those with high potential for transmission


Disease Eradication vs Elimination vs Control

.....From individual health to community health perspective.....

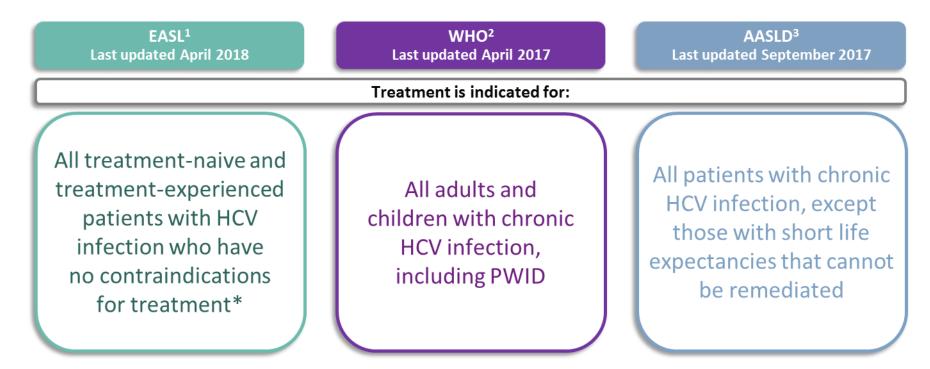
- **Control:** reduction in the incidence, prevalence, morbidity, or mortality of an infectious disease to a locally acceptable levels; continued intervention measures required
- Elimination: reduction to zero of incidence in a defined geographical area as a result of deliberate efforts; continued intervention measures required
- Eradication: permanent reduction to zero of the worldwide incidence of infection; intervention measures no longer needed
 - Only 1 example: smallpox


Proposed WHO targets for reducing new infections and stopping deaths

Elimination: reduction to zero of incidence in a defined geographical area as a result of deliberate efforts; continued intervention measures required.

WHO global health sector strategy on viral hepatitis 2016–2021. Available at: http://www.who.int/hepatitis/strategy2016-2021/ghsshep/en/ (accessed March 2018).

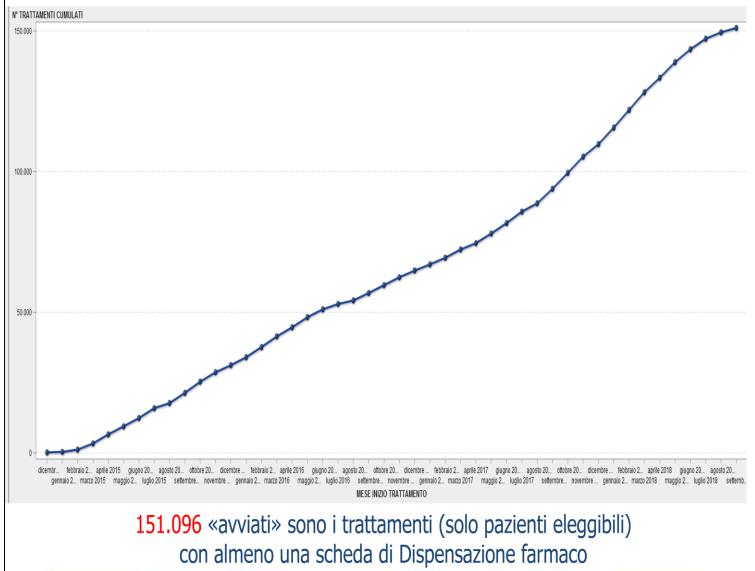
GLOBAL ELIMINATION STRATEGY: 2015 BASELINE TOWARDS 2030 TARGETS



Where Are the Undiagnosed and Untreated?

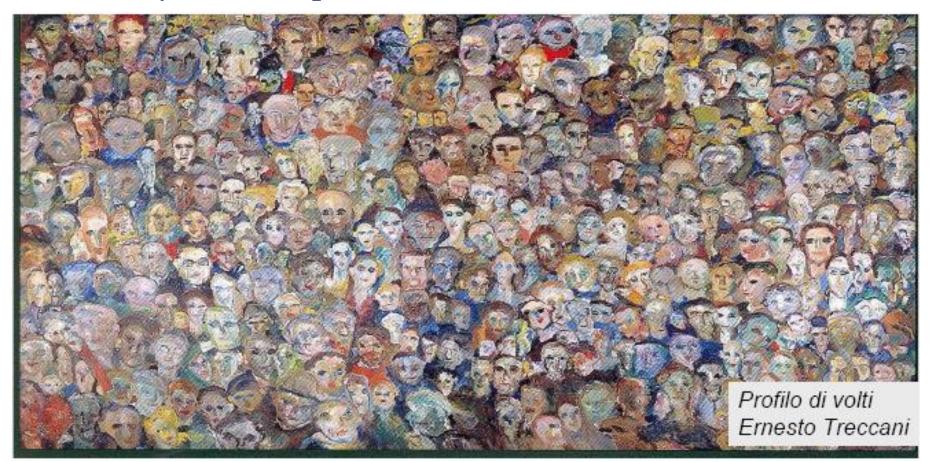
1. Global Hepatitis Report 2017. Geneva: World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO. 2. WHO guidelines on hepatitis B and C testing. Geneva: World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO. 3. Ladino M et al. J Am Soc Nephrol. 2016;27:2238-2246.

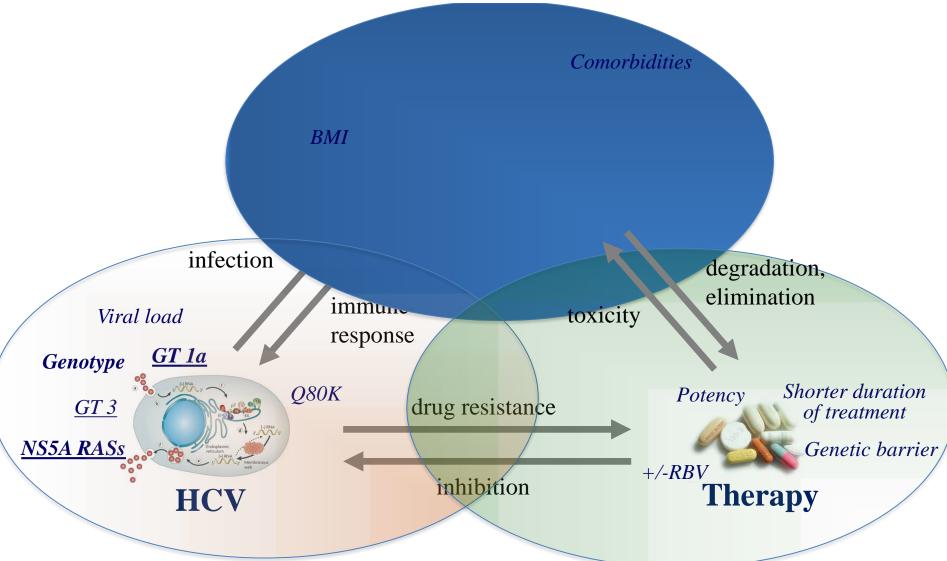
Evolution of Treatment Guidelines: Treatment Is Now Indicated for All Patients



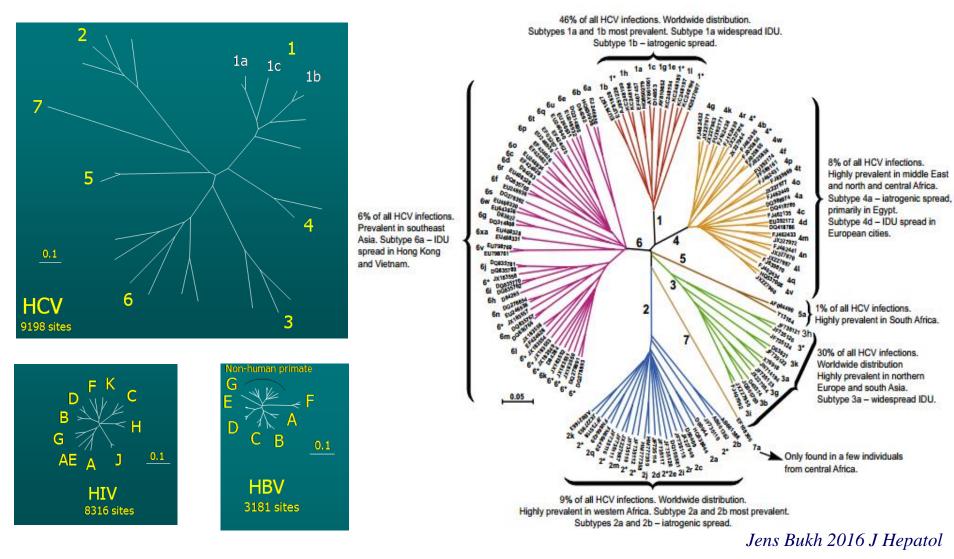
* Treatment is generally not recommended in patients with limited life expectancy because of non-liver-related comorbidities.

EASL recommendations on the treatment of hepatitis C 2018. *J Hepatol* 2018; E-pub ahead of print (doi: 10.1016/j.jhep.2018.03.026). WHO guidelines for the screening, care and treatment of persons with chronic HCV infection. Available at: http://apps.who.int/iris/bitstream/10665/205035/1/9789241549615_eng.pdf?ua=1 (accessed March 2018); AASLD recommendations for testing, managing and treating hepatitis C. Available at: http://www.hcvguidelines.org/full-report-view (accessed March 2018).

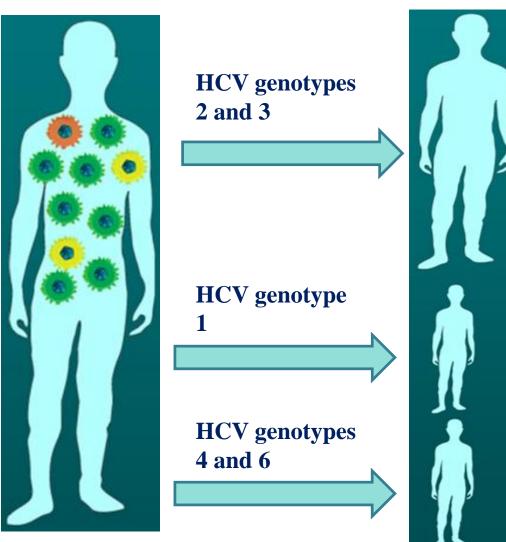

Trend cumulativo dei trattamenti avviati


Many lessons learnt from HIV can be helpful for designing adequate treatment strategies against viral hepatitis such as HCV....

The personalized medicine


All international guidelines focus on the importance of **tailoring antiretroviral therapy** to the individual patient, on the basis of **HIV-1 genetic data**, integrated with clinical, laboratory and therapeutic information.

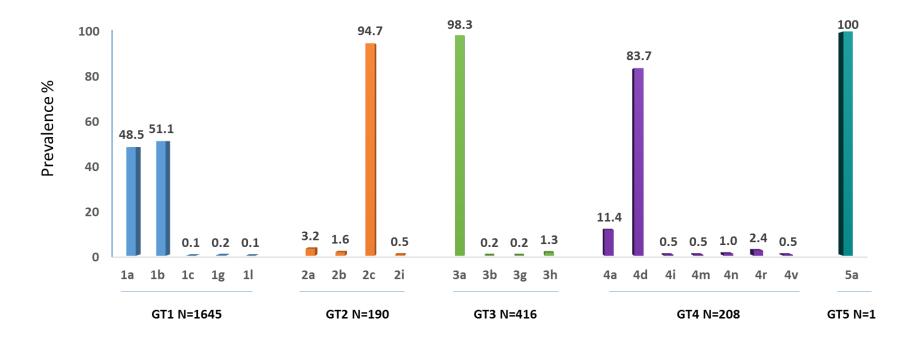
Many factors contribute to viral response to DAA-treatment



HCV genetic variability is higher than HIV's and HBV's

31%–33% nucleotide difference among the 7 known HCV genotypes and 20%–25% among the nearly 67 HCV subtypes (Smith et al., 2014).

HCV genotype was the most important baseline predictor for response to Peg-IFN + Ribavirin combination therapy


SVR = 78-86 % HCV-2= 80-95% HCV-3 Low viremia = 75-80% HCV-3 High viremia = 60-70%

SVR = 35-65 % HCV-1 Low viremia = 50% HCV-1 High viremia = 30-35%

SVR = 42-52 %

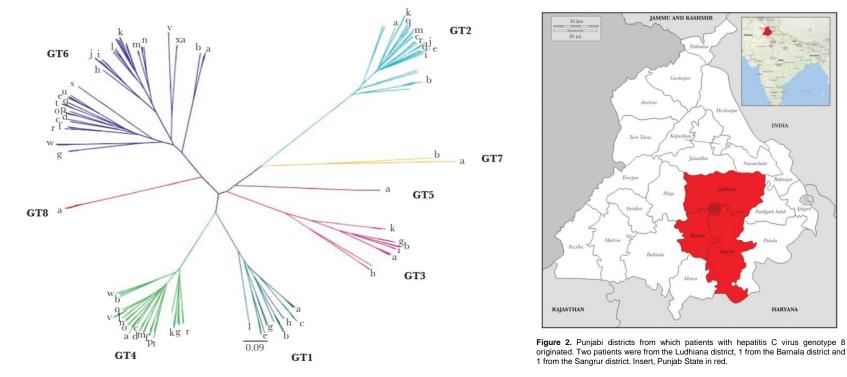
Manns, Lancet 2001; Fried, N Engl J Med 2002; Hadziyannis, Ann Intern Med 2004; Alfaleh, Liver Int 2004 The underlying functional mechanisms for lower SVR rates of the different HCV genotypes were unknown

Distribution of HCV genotypes/subtypes within the Italian resistance database Vironet C (N=2460 patients)

The Journal of Infectious Diseases

MAJOR ARTICLE

Identification of a Novel Hepatitis C Virus Genotype From Punjab, India: Expanding Classification of Hepatitis C Virus Into 8 Genotypes


Sergio M. Borgia,^{1a} Charlotte Hedskog,² Bandita Parhy,² Robert H. Hyland,² Luisa M. Stamm,² Diana M. Brainard,² Mani G. Subramanian,² John G. McHutchison,² Hongmei Mo,² Evguenia Svarovskaia,² and Stephen D. Shafran^{3a}

¹William Osler Health System, Brampton Civic Hospital, Ontario, Canada; ²Gilead Sciences, Foster City, California; ³University of Alberta, Edmonton, Canada

Received 14 February 2018; editorial decision 25 June 2018; accepted 27 June 2018; published online June 30, 2018.

A novel HCV GT was recently identified in 4 patients originating from Punjab, India

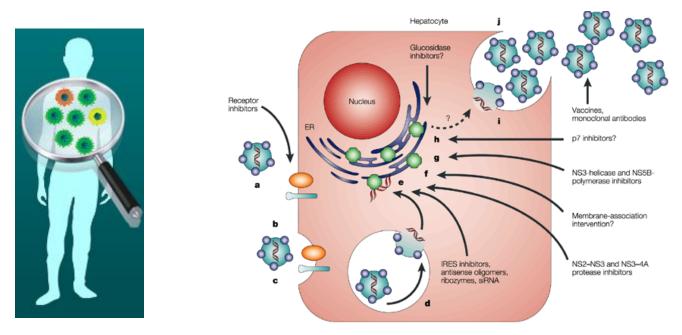
This novel HCV GT, <u>GT8</u>, is genetically distinct from previously identified HCV GT1–7 with >30% nucleotide sequence divergence to the established HCV subtypes.

The estimated prevalence of HCV infection in India is approximately 0.5%–2.0%, with GT3 being most common. Despite the low prevalence of HCV, India with its large population accounts for a significant proportion of the global HCV burden with approximately 12–18 million people infected *Borgia SM et al., JID 2018*

The four patients were previously identified to be infected with GT5 by LiPA or Abbott RealTime polymerase chain reaction assays

Despite presence of baseline resistance-associated substitutions within the GT8 virus of all 4 patients, all patients achieved a sustained virologic response; 2 treated with sofosbuvir/velpatasvir/voxilaprevir for 8 weeks, 1 with sofosbuvir/ledipasvir plus ribavirin for 24 weeks and 1 with sofosbuvir plus daclatasvir for 12 weeks.

Table 1. Characteristics of Patients with GT8 HCV Infection


						GT by		Resistance-Associated Substitutions ^a			_	
Patient	HCV VL (IU/mL)	Country (Origin)	Race	Age	Sex	Abbott or LiPA	GT by Phylo Analyses		NS5A RASs	NS5B RASs	Treatment	SVR12
1	20 100 000	CAN (Kalala village, Barnala District, Punjab, India)	Asian	28	Male	GT5	GT8	V36L Q80K	Q30S Y93S	None	SOF/VEL/VOX 8 wks	Yes
2	8710000	CAN (Rampura village, Sangrur District, Punjab State, India)	Asian	31	Male	GT5	GT8	V36L Q80R	Q30S Y93S	None	SOF/VEL/VOX 8 wks	Yes
3	4735001	CAN (Ludhiana City, Ludhiana District, Punjab, India)	Asian	40	Male	GT5	GT8	V36L Q80R	Q30S Y93S	None	SOF + DCV 12 wks	Yes
4	4200000	CAN (Raikot City, Ludhiana District, Punjab State, India)	Asian	66	Female	GT5	GT8	V36L Q80K	Q30S Y93S	None	LDV/SOF + RBV 24 wks	Yes

Abbreviations: CAN, Canada; DAA, direct-acting antiviral; DCV, daclatasvir; GT, genotype; HCV, hepatitis C virus; LVD, ledipasvir; RAS, resistance-associated substitution; RBV, ribavirin; SOF/ VEL/VOX, sofosbuvir/velpatasvir/voxilaprevir; SVR, sustained virologic response; VL, viral load.

aRASs are defined as substitutions that confer reduced susceptibility to any approved DAA inhibitor with >2.5-fold change compared with GT1a reference (HCV1a H77 NC AF009606).

Borgia SM et al., JID 2018

Mutations occur frequently during the replication of HCV

It has been predicted that every nucleoside of the 3.2 kb HBV genome or the 10 kb HIV and HCV genomes theoretically can be substituted every day within a given infected patient

Time	Number of nucleotide changes	Probability	Number of virions generated per day	Number of all possible mutants	Fraction of all possible mutants created per day
	0	0.91	9.1 × 10 ¹¹		
Before therapy	1	0.087	8.7×10^{10}	2.9×10^{4}	1
	2	0.0042	4.2×10^{9}	4.1×10^{8}	1
	3	0.00013	1.3×10^{8}	4.0×10^{12}	3.4×10^{-5}
	0	0.91	9.1×10^{6}		
End of first day	1	0.087	8.7×10^{5}	2.9×10^{4}	1
of therapy"	2	0.0042	4.2×10^{4}	4.1×10^{8}	1.0×10^{-4}
	3	0.00013	1.3×10^{3}	4.0×10^{12}	3.4×10^{-10}

*Additional drug-resistant or compensatory mutation after a 5-log10 decrease in the HCV RNA production during tre

Rong L et al., Sci Transl Med 2010

Not all NS5A RASs are equally clinical relevant

1a-red, 1b-blue, 2a/b/c-green, 3a-purple, 4a/d-yellow, 5-light blue, 6-brown

NS5A domain I (1-213 aa)

Daclatasvir	24	28	30	31	32		58	62	92	93
(1st generation)	R	AMC1M IS⊻ ⊻	DKGKG H GKG H S H S S	LEMF⊻FM MLIV ⊻MMV ⊻V	L L S			L	KR	CCHHHR EH HI N S
Elbasvir		28	30	31			58			93
(2nd generation)			DKQF ERH GY H	EE M M V V			DQ			CHC HH N S
Ledipasvir	24	28	30	31	32	38	58		92	93
(1st generation)	R	A G T V	ELHH GN B HR S KY		L	E	DDF		IK	CSCC EHH H N
Ombitasvir	24	28	30	31			58		92	93
(1st generation)	<u>R</u> Q	I M I S T S ⊻	ERQR HY L	⊻ E I M L ⊻			<u>D</u> S		I	CNHH ESNS HS
Pibrentasvir	24	28	30	31			58			93
(2nd generation)	RE	A G G K	D G K R	M E I M			DI			보보 N
Velpatasvir	24	28	30	31	32		58		92	93
(2nd generation)	<u>R</u> K	AFTM GSV L V	ESH GH⊻ KL R	FFIFI IIMMM MYPV YYY	L A L Q R		DRAGG T H		KKRKT S T	CCHFN S CHFN S S CHFN S S CHFN S S S CHFN S S S T S S T

Summary of NS5A substitutions associated with resistance to NS5A inhibitors. HCV genotypes and subtypes are represented by different colors: 1a-red, 1b-blue, 2a/b/c-green, 3a-purple, 4a/d-yellow, 5-light blue, 6-brown. Amino acid substitutions detected *in vivo* in DAA failing patients are underlined, independently of *in vitro* data information. In addition, NS5A RASs detected only *in vitro* but associated with fold-change in drug activity compared to the wild-type replicons ≥ 100 (1st generation NS5A-inhibitors,) or ≥ 3 (2nd generation NS5A-inhibitors) are also included in the figures. For 1st generation NS5A-inhibitors, *in vivo* substitutions with fold-change ≥ 100 , and *in vitro* substitutions with fold-change ≥ 000 are represented in bold. For 2nd generation NS5A-inhibitors, in vivo substitutions with fold-change ≥ 100 are represented in bold.

Sorbo MC, et al Drug Resistance Update 2018

HCV genotype <u>still</u> dictates the choice of anti-HCV drugs and can modulate the duration of treatment in infected patients with chronic hepatitis C

The HCV genotype, including genotype 1 subtype (1a or 1b), should be assessed prior to treatment initiation.

EASL Recommendations on Treatment of Hepatitis C 2018

	Pang	enotypic reg	imens	Genotyp	Genotype-specific regimens			
Genotype	SOF/ VEL	GLE/PIB	SOF/ VEL/ VOX	SOF/ LDV	GZR/ EBR	OBV/ PTV/r + DSV		
Genotype 1a	Yes	Yes	No*	Yesª	Yes⁵	No		
Genotype 1b	Yes	Yes	No*	Yes	Yes	Yes		
Genotype 2	Yes	Yes	No*	No	No	No		
Genotype 3	Yes℃	Yes	Yes ^d	No	No	No		
Genotype 4	Yes	Yes	No*	Yesª	Yes ^e	No		
Genotype 5	Yes	Yes	No*	Yesª	No	No		
Genotype 6	Yes	Yes	No*	Yesª	No	No		

DSV, dasabuvir; EBR, elbasvir; GLE, glecaprevir; GZR, grazoprevir; IFN, interferon; LDV, ledipasvir; OBV, ombitasvir; PIB, pibrentasvir; PTV, paritaprevir; r, ritonavir; SOF, sofosbuvir; VEL, velpatasvir; VOX: voxilaprevir.

Triple combination therapy efficacious but not useful due to the efficacy of double combination regimens.

^a Treatment-naïve patients without cirrhosis or with compensated (Child-Pugh A) cirrhosis.

^b Treatment-naïve and treatment-experienced patients without cirrhosis or with compensated (Child-Pugh A) cirrhosis with an HCV RNA level ≤800,000 IU/

ml (5.9 Log₁₀ IU/ml).

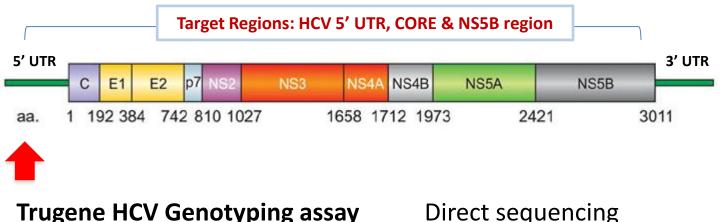
Treatment-naïve and treatment-experienced patients without cirrhosis.

Treatment-naïve and treatment-experienced patients with compensated (Child-Pugh A) cirrhosis.

² Treatment-naïve patients without cirrhosis or with compensated (Child-Pugh A) cirrhosis with an HCV RNA level ≤800,000 IU/ml (5.9 Log₁₀ IU/ml).

Rating: Class I, Level A

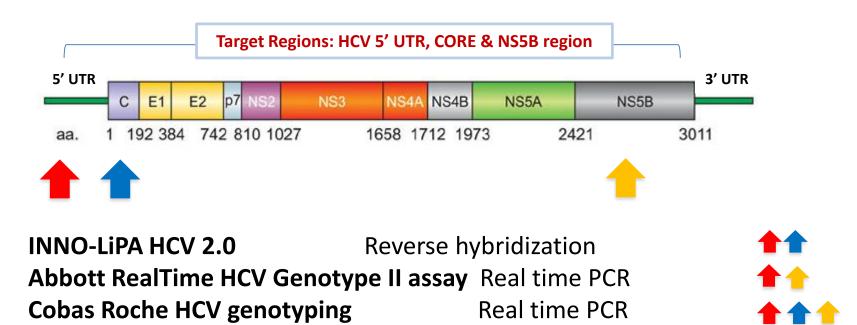
Testing for HCV genotype is recommended to guide selection of the most appropriate antiviral regimen.


HCV Guidance: Recommendations for Testing, Managing, and Treating Hepatitis C Update 21 Sept 2017

HCV	Pogimon	Du	Duration, Wks						
GT	Regimen	No Cirrhosis	Compensated Cirrhosis						
1	GLE/PIB	8	12						
	GZR/EBR	12	12						
	SOF/LDV	8 or 12	12						
	SOF/VEL	12	12						
2 or 3	GLE/PIB	8	12						
	SOF/VEL	12	12						
4	GLE/PIB	8	12						
	SOF/VEL	12	12						
	GZR/EBR	12	12						
	SOF/LDV	12	12						
5 or 6	GLE/PIB	8	12						
	SOF/LDV	12	12						
	SOF/VEL	12	12						

Several commercial assays are available for determining genotype/subtype

First-generation assays target the **5'UTR** for genotypes 1-6. Concordance of the TRUGENE assay with NS3/4A or NS5B sequence-based genotype subtyping assays on 1461 samples tested was **79.6%** (*Sarrazin C et al., Antivir Res 2015*)



INNO-Lipa HCV 1.0

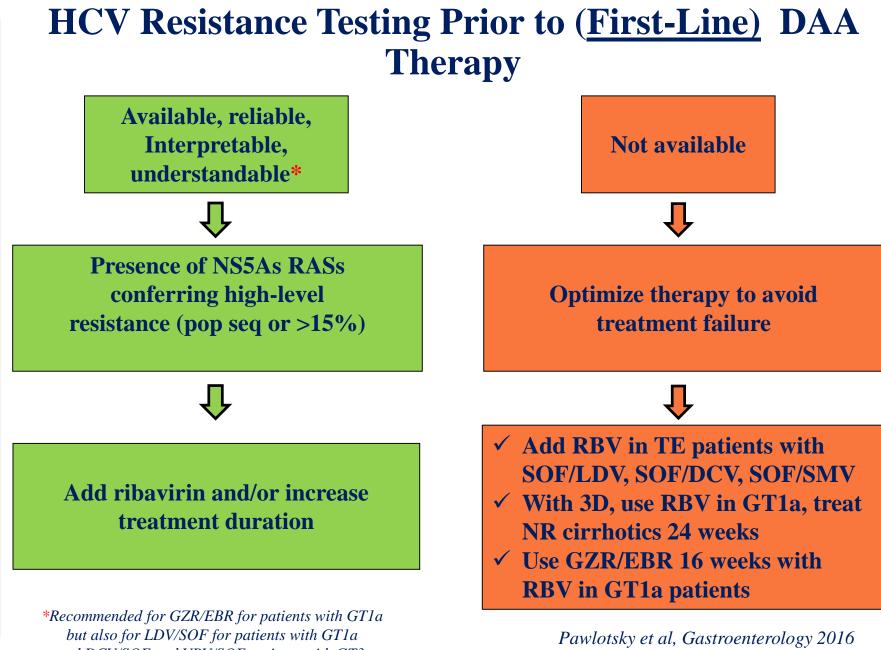
Reverse hybridization

Several commercial assays are available for determining genotype/subtype

In addition to **5'UTR**, INNO-LiPA-HCV-2.0, Abbott and Cobas HCV genotyping target also the **NS5B** and/or the **core** genes, providing additional information for a correct subtyping.

Issues in HCV genotyping

HCV Sanger sequencing confirmed the previous genotype by commercial-assays in 89.7% of cases analysed


	Patients (N)	Patients (%)
Genotype/subtype confirmed	1627	89.7
Overall, 95 out of 1813 (5.2%) candidate to start a treatment discordant genotype or subty	t containing a l	DAA showed a
Discordant cases		
Discordant genotypes	37	2.0
Genotype 1 with discordant subtype	58	3.2
Total	1813	100

Aragri M et al., et al., 15th European Meeting on HIV & Hepatitis 2017

HCV sequencing is useful for identifying RASs but also the "correct" genotype: 15/310 (4.8%) patients were found infected with a different HCV genotype at failure

Notably, 10 patients previously classified as infected with HCV-1 were actually infected with HCV-2 and HCV-3, 9/10 failed a 3D+RBV regimen and all presented RASs at failure

	Pre-therapy	Genotype by				Failure RASs	
ID Patient	genotype by commercial assay	sequencing at failure	DAA regimen	DAA response	NS3	NS5A	NS5B
1497	1a	3a	3D+RBV	Non-responder		Y93H	
2150	1a	3a	3D+RBV	Breakthrough	Q80K	Y93H	
2068	1b	3a	3D	Non-responder	Q80K	Y93H	
1424	1b	3 a	3D+RBV	Non-responder		Y93H	
2140	1b	3 a	3D+RBV	Non-responder		A30K	
2353	1	3 a	3D	Non-responder		Y93H	
1823	1b	2c	3D+RBV	Non-responder	D168V		
2020	1b	2c	3D	Non-responder	D168V	F28C	
2623	1b	2c	3D	Relapse		F28C	
2890	1b	2c	SMV+SOF	Relapse		L31M	
2204	2	1b	LDV+SOF+RBV	Relapse		R30Q+L31I+Y93H	C316N
2886	2	1b	SOF+RBV	Relapse	Y56F		C316N
2153	2	3a	SOF+RBV	Relapse		A30K+L31F	
1111	4	1a	2D+RBV	Breakthrough	V36M+Y56H	M28T	
45	4	3a	SMV+SOF	Relapse	D168K		

and DCV/SOF and VPV/SOF patients with GT3

r

e С

S

0 n Μ е

d

С

n е а р

р

r

0

а

С

h

NEW EASL Guidelines Sept 2016

HCV Resistance Testing Prior to (<u>First-Line</u>) DAA Therapy

Available, reliable,

Not ovoilable

THERE'S THE NEED TO STANDARDIZE HCV RESISTANCE EVALUATION AND INTERPRETATION ... ONLY AFTER THAT, HCV RESISTANCE TESTING CAN BE EFFICIENTLY APPLIED INTO CLINICAL PRACTICE

.....VIRONET C.....

*Recommended for GZR/EBR for patients with GT1a but also for LDV/SOF for patients with GT1a and DCV/SOF and VPV/SOF patients with GT3

RBV in GT1a patients

Pawlotsky et al, Gastroenterology 2016 NEW EASL Guidelines Sept 2016

National Quality Control and Validation of Hepatitis C NS3, NS5A and NS5B Genotypic Resistance Testing

Tina Ruggiero¹, Valeria Cento², Marianna Aragri², Marco Arosio³, Fausto Baldanti⁴, Maurizia Brunetto⁵, Bianca Bruzzone⁶, Enzo Boeri⁷, Daniela Cavallone⁵, Nicola Coppola⁸, Mariantonietta Di Stefano⁹, Valeria Ghisetti¹, Annapaola Callegaro³, Maria Rosaria Capobianchi¹⁰, Cinzia Caudai¹¹, Nunzia Cuomo¹², Silvia Galli¹³, Enrico Galmozzi¹⁴, Anna Rosa Garbuglia¹⁰, William Gennari¹⁵, Alessia Lai¹⁶, Stefano Menzo¹⁷, Valeria Micheli¹⁸, Claudia Minosse¹⁰, Laura Monno¹⁹, Stefania Paolucci⁴, Teresa Pollicino²⁰, Adriana Raddi¹², Giuseppina Raffa²⁰, Giovanni Raimondo²⁰, Maurizio Sanguinetti²¹, Rosaria Santangelo²¹, Teresa Santantonio⁹, Silvia Soldini²¹, Mario Starace⁸, Maria Linda Vatteroni²², Antonio Craxi²³, Carlo Federico Perno²⁴, Francesca Ceccherini-Silberstein², Maurizio Zazzi¹¹ on behalf of HCV Virology Italian Resistance Network (VIRONET C)

- 21.Microbiologia, Policlinico Universitario Agostino Gemelli, Roma
- 22. Virologia, Azienda Ospedaliero-Universitaria Pisana
- 23. Gastroenterology, "P. Giaccone" University Hospital, Palermo, Italy.
- 24. University of Milan, Milan, Italy.

^{1.}Laboratorio di Microbiologia e Virologia - ospedale Amedeo di Savoia ASL Città di Torino, Torino

^{2.}Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy,

^{3.} Microbiologia e Virologia, ASST Papa Giovanni XXIII, Bergamo

^{4.} Virologia Molecolare, Fondazione Policlinico San Matteo

^{5.}Epatologia, Azienda Ospedaliero-Universitaria Pisana

^{6.}UQ Igiene, IRCCS AOU San Martino - IST, Genova

^{7.} Microbiologia e Virologia, Ospedale San Raffaele, Milano

^{8.} Malattie Infettive, Università della Campania Luigi Vanvitelli, Napoli

^{9.}Malattie Infettive, Polo Biomedico "E. Altomare ", Foggia

^{10.} Virologia, INMI Lazzaro Spallanzani, Roma

^{11.} Virologia, Policlinico S. Maria alle Scotte, Siena

^{12.}Microbiologia e Virologia, Azienda Ospedaliera dei Colli, Cotugno - Napoli

^{13.} Microbiologia, Ospedale S. Orsola-Malpighi, Bologna

^{14.} Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università di Milano, Milano

^{15.} Microbiologia e Virologia, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena

^{16.} ASST Fatebenefratelli Sacco, Milano

^{17.} Virologia, Ospedali riuniti di Ancona, Ancona

^{18.} Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milano

^{19.} Malattie Infettive, Azienda Ospedaliera Policlinico di Bari, Bari

^{20.}Epatologia Clinica e Biomolecolare, Azienda Ospedaliera Universitaria Policlinico "G Martino", Messina

VIRONETC

National Quality Control and Validation of Hepatitis C NS3, NS5A and NS5B Genotypic Resistance Testing in Italy

16/21 labs generated all the 30 expected sequences, while the remaining 5 generated a mean of 23.4 ± 3.9 SD sequences.

The majority of the participating labs detected all the NS3, NS5A, NS5B RASs identified by NGS with prevalence >15%. Among the 16 labs that provided all 30 HCV sequences, with respect to NGS results, 12 labs had 0-1 RAS discordance, 3 labs had RAS discordances in 2 samples, and 1 lab had 4 RAS discordances in 2 samples.

The Geno2pheno tool was used for detection of resistance associated substitutions (RASs).

Discordances Center **N** Sequences TOT N Seq NS3 N Seq NS5A N Seq NS5B **N** samples 1. iechtenstei Switzerland 2. 3. Slovenia 4. 9 but short Venice 5. Croatia Bosnia an 6. Herzegovir 7. Saraie Maring Monaco 8. o Cannes Italy 9. Rome 11. 12. 13. Lecce 14. Sardegna 15. Cagliari 16. 17. Palerm Trapani 18. Marsala 19. Tunis Google My Maps Syracuse 20. 21.

Ruggiero T et al European Drug Resistance Workshop 2018

Different impact according to specific baseline NS5A RASs in HCV-1 patients treated with Ledipasvir/Sofosbuvir

First-line regimen 1% cutoff p-value = 1.0 p-value = 0.69 p-value = 1.0 p-value = 0.7 p-value = 1.0 p-value = 1.0 No RAS, SVR: 100 100 GT1a: 98.3% 100 87.5^{90.0} 1306/1329 pts 87.9 86.7 84.6 83.3 82.6 80.0 80.0 GT1b: 98.6% 80 75.0 1741/1770 pts SVR 12 (%) 60 40 15% cutoff No RAS, SVR: 20 GT1a: 98% 1416/1445 pts 35/35 9/9 14/16 9/10 12/15 6/8 22/26 12/15 13/15 5/6 29/33 19/23 0

Q30H

>100-fold

K24R

3.7-fold

GT1b: 98.7% 1880/1915 pts

M28T

61-fold

Figure 4. Treatment Outcome in Patients with NS5A RASs. Substitution analyses were conducted on deep sequencing data (population sequences were not included). (a) SVR12 by specific baseline NS5A RASs and cutoff (1 percent and 15 percent) in patients treated with ledipasvir/sofosbuvir.

GT 1a

Q30R

L31M

>100-fold >100-fold >1000-fold

Sarrazin et al Gastroenterology 2016

9/9

L31M

3.4-fold

Y93H

9/9

GT 1b

1a vs 1b

1% cutoff 15% cutoff

p-value = 0.6

88.2

31/33 15/17

Y93H

>1000-fold

93.3

p-value = 1.0

100 100

Clinically relevant NS5A RASs that can be used to guide treatment decisions in GT1a and GT3 patients

If present: add RBV and/or increase treatment duration

Clinically relevant NS5A RASs that can be used to guide treatment decisions in GT1a and GT3 patients

NS5A	Ledipasvir RASs	Elbasvir RASs	NS5A RASs		
amino	Genotype 1a	Genotype 1a	Genotype 3		
position	Sofosbuvir/ Ledipasvir treatment	Grazoprevir/ Elbasvir treatment	Sofosbuvir/ Velpatasvir treatment		
M28	M28A M28G M28T	M28A M28G M28T			
Q30	Q30E Q30G Q30H Q30K Q30R	Q30D Q30E Q30G Q30H Q30K Q30L Q30R			
L31	L31M L31V	L31F L31M L31V			
P32	P32L P32S				
H58	H58D	H58D			
Y93	Y93C Y93H Y93N Y93S	BH Y93H BN Y93N			

Clinically relevant NS5A RASs that can be used to guide treatment decisions in GT1a, Gt1b and GT3 patients

DAA Regimen	Genotype			
	1a	1Ь	3	
Ledipasvir/sofosbuvir	Q30H/R L31M/V Y93C/H/N	L31V ?Y93H	n/a	
Elbasvir/grazoprevir	M28A/T Q30H/R L31M/V Y93C/H/N	Y93H	n/a	
Paritaprevir/ritonavir/ombit asvir with dasabuvir ± ribavirin	n/a	n/a	n/a	
Sofosbuvir/velpatasvir	n/a	n/a	Y93H	

Adapted from EASL Guidelines Sept 2016

Adapted from AASLD Guidelines Oct 2017

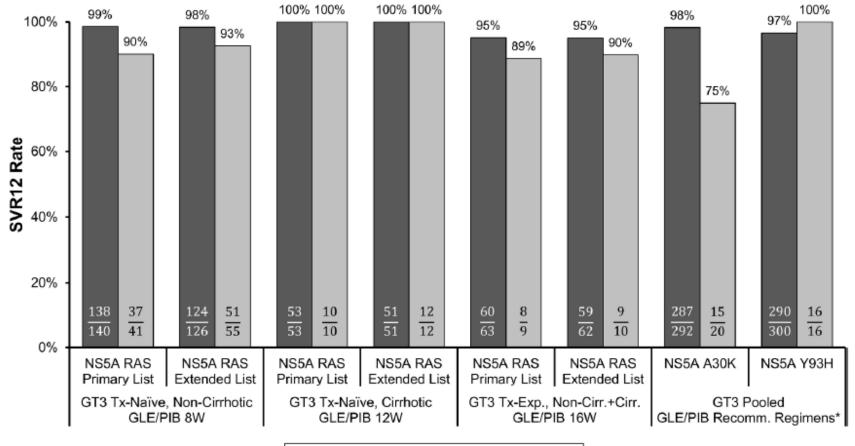
Y93H fold change for approved NS5A-inhibitors across genotypes 1a, 1b, 2, 3, 4

NS5A-inhibitors	Fold-change <i>in vitro</i> ^a									
	GT-1a	GT-1b	GT-2	GT-3	GT-4					
Daclatasvir	1400-5432	19-145	749-1750	2154	45-169					
Elbasvir	220-600	12-67	-	157	-					
Ledipasvir	1677-3309	1319	-	30 ^b	1000					
Ombitasvir	41383	77	4710	6728	20-100					
Pibrentasvir	7	0.6	-	2-3	-					
Velpatasvir	609	3	46	724	3					

^aY93H fold change value in comparison with wild type strains; maximum and minimum values are reported [26, 27, 39, 42, 57, 65, 71, 96, 105, 125, 132, 134, 144, 146, 157, 161]. For 1st generation NS5A-inhibitors, RASs with fold-change >100x are reported in red (resistance likely); RASs with fold-change 20-100 are reported in yellow (resistance possible); RASs with fold-change 3-20x are reported in green (likely susceptible); only *in-vivo* RAS, with no fold-change available are reported in red (resistance likely); RASs with fold-change 100x are reported in yellow (resistance possible). For 2nd generation NS5A-inhibitors elbasvir and velpatasvir, RASs with fold-change \geq 10x are reported in red (resistance likely); RASs with fold-change 2.5-9 are reported in yellow (resistance possible); RASs with fold-change \leq 2.5x are reported in green (likely susceptible); only *in-vivo* RAS, with no fold-change available are reported in violet (resistance likely); susceptible); only *in-vivo* RAS, with no fold-change available are reported in violet (resistance likely); susceptible); only *in-vivo* RAS, with no fold-change available are reported in violet (resistance possible). ^b Ledipasvir exhibited an EC50 value of 141 nM, affording a >670-fold reduction in potency when compared to daclatasvir [134]. GT, genotype. "-" indicates no data available.

Sorbo MC, et al Drug Resistance Update 2018 in press

Broad cross-resistance among NS5A Inhibitors, but not all single RASs and patterns are the same


Table 1. Examples of NS5A and NS3 RASs and their reported phenotypic effect on DAA activity in transient HCV replicons.

NS5A Inhibitors (Fold-Change in EC ₅₀ Values)								
Ledipasvir	Ombitasvir	Daclatasvir	Elbasvir	Velpatasvir	Pibrentasvir			
4	≤1	2	≤1	≤1	≤1			
61	8965	205	15	8	2			
≤1	58	1	1	≤1	2			
183	3	435	6	2	≤1			
632	800	365	16	2	2			
554	2	105	10	16	≤1			
1127	243	367	6	7	≤1			
≤1	≤1	≤1	ND	≤1	≤1			
1677	41383	1600	220	609	7			
ND	ND	76,833	2286	ND	ND			
34,960	ND	98,167	ND	2835	17			
33,691	354,981	52,667	ND	18,698	260			
3	≤1	3	1 ²	2	2			
1807	77	12	17 ²	3	≤1			
20,270	142	16,000	ND	44	≤1			
n/a	n/a	117	n/a	50	≤1			
n/a	n/a	3733	n/a	724	2			
(18, 32, 67)	(18, 37)	(18, 48, 49, 67)	(19, 51, 68)	(55, 67, 69)	(59, 70)			
	4 61 ≤1 183 632 554 1127 ≤1 1677 ND 34,960 33,691 3 3 1807 20,270 n/a n/a n/a	LedipasvirOmbitasvir4≤1618965≤158183363280055421127243≤1≤1167741383NDND34,960ND33,691354,9813≤118077720,270142n/an/an/an/a	LedipasvirOmbitasvirDaclatasvir4 ≤ 1 2618965205 ≤ 1 581183343563280036555421051127243367 ≤ 1 ≤ 1 ≤ 1 1677413831600NDND76,83334,960ND98,1673 ≤ 1 3 1807771220,27014216,000n/an/a117n/an/a3733	LedipasvirOmbitasvirDaclatasvirElbasvir4 ≤ 1 2 ≤ 1 61896520515 ≤ 1 5811183343566328003651655421051011272433676 ≤ 1 ≤ 1 ≤ 1 ND1677413831600220NDND76,833228634,960ND98,167ND3 ≤ 1 3 1^2 18077712 17^2 20,27014216,000NDn/an/a117n/an/an/a3733n/a	LedipasvirOmbitasvirDaclatasvirElbasvirVelpatasvir4 ≤ 1 2 ≤ 1 ≤ 1 618965205158 ≤ 1 5811 ≤ 1 18334356263280036516255421051016112724336767 ≤ 1 ≤ 1 ≤ 1 ND ≤ 1 1677413831600220609NDND76,8332286ND34,960ND98,167ND18,6983 ≤ 1 3 1^2 218077712 17^2 320,27014216,000ND44n/an/a117n/a50n/an/a3733n/a724			

Harrington et al, Hepatology 2017

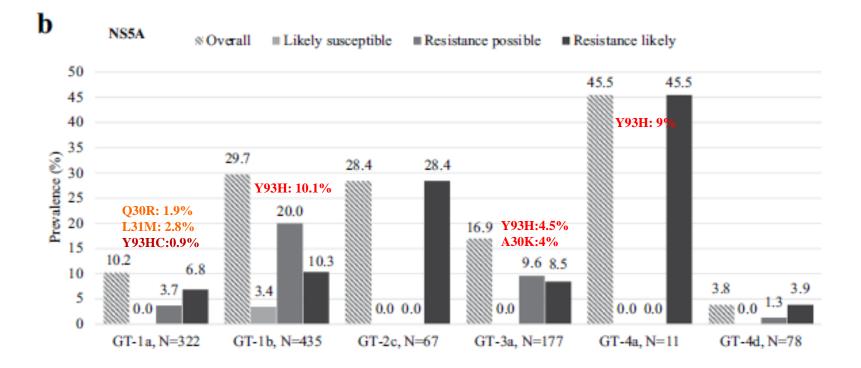
No BL GRT recommendations are included in U.S. labeling for GLE/PIB, although available data on the impact of the GT3 NS5A A30K BL RAS are described for consideration by clinicians on a case-by-case basis

Indicating that a longer treatment duration may reduce the impact of A30K GLE/PIB (GT3)

Harrington et al, Hepatology 2017

SCIENTIFIC **Reports**

Received: 3 January 2018 Accepted: 16 May 2018 Published online: 12 June 2018


OPEN Prevalence of Single and Multiple Natural NS3, NS5A and NS5B Resistance-Associated Substitutions in Hepatitis C Virus Genotypes 1–4 in Italy

Ada Bertoli¹, Maria Chiara Sorbo¹, Marianna Aragri¹, Ilaria Lenci², Elisabetta Teti³, Ennio Polilli⁴, Velia Chiara Di Maio¹, Laura Gianserra⁵, Elisa Biliotti⁶, Chiara Masetti², Carlo F. Magni⁷, Sergio Babudieri⁸, Laura A. Nicolini⁹, Martina Milana², Pierluigi Cacciatore⁴, Loredana Sarmati³, Adriano Pellicelli¹⁰, Stefania Paolucci¹¹, Antonio Craxi¹², Filomena Morisco¹³, Valeria Pace Palitti¹⁴, Massimo Siciliano¹⁵, Nicola Coppola¹⁶, Nerio lapadre¹⁷, Massimo Puoti¹⁸, Giuliano Rizzardini⁷, Gloria Taliani⁶, Caterina Pasquazzi⁵, Massimo Andreoni³, Giustino Parruti⁴, Mario Angelico², Carlo Federico Perno¹⁹, Valeria Cento¹, Francesca Ceccherini-Silberstein¹ & HCV Virology Italian Resistance Network (VIRONET-C)*

Natural resistance-associated substitutions (RASs) are reported with highly variable prevalence across different HCV genotypes (GTs). Frequency of natural RASs in a large Italian real-life cohort of patients infected with the 4 main HCV-GTs was investigated. NS3, NS5A and NS5B sequences were analysed in 1445 HCV-infected DAA-naïve patients. Sanger-sequencing was performed by home-made protocols on 464 GT1a, 585 GT1b, 92 GT2c, 199 GT3a, 16 GT4a and 99 GT4d samples. Overall, 20.7% (301/1455) of patients showed natural RASs, and the prevalence of multiclass-resistance was 7.3% (29/372 patients analysed). NS3-RASs were particularly common in GT1a and GT1b (45.2-10.8%, respectively), mainly due to 80K presence in GT1a (17%). Almost all GTs showed high prevalence of NS5A-RASs (range: 10.2-45.4%), and especially of 93H (5.1%). NS5A-RASs with fold-change >100x were detected in 6.8% GT1a (30H/R-31M-93C/H), 10.3% GT1b (31V-93H), 28.4% GT2c (28C-31M-93H), 8.5% GT3a (30K-93H), 45.5% GT4a (28M-30R-93H) and 3.8% GT4d (28V-305-93H). Sofosbuvir RAS 282T was never detected, while the 159F and 316N RASs were found in GT1b (13.4–19.1%, respectively). Natural RASs are common in Italian patients infected with HCV-GTs 1–4. High prevalence of clinically-relevant RASs (such as Y93H) supports the appropriateness of HCV resistance-test to properly guide DAA-based therapy.

The prevalence of pre-treatment NS5A RASs in GT-1 is different across different countries, ranging from 6% to 25%, and different according to subtype.....

The Italian experience: different NS5A RASs prevalence according to genotype and subtype in DAA naive patients

Despite the excellent efficacy of DAA containing regimens, virological failures can occur, often associated with development of resistance and with differences according to the type of regimen and HCV genotype

	GT1a			GT1b GT2		GT3		GT4					
	NS3	NS5A	NS5B	NS3	NS5A	NS5B	NS5A	NS5B	NS5A	NS5B	NS3	NS5A	NS5B
simeprevir/ sofosbuvir	R155K D168E	n.d.	no RASs	D168V	n.d.	L159F C316N		oplicable	not app	blicable	Q80R D168E	n.d.	no RASs
daclatasvir/ sofosbuvir	n.d.	Q30H/R L31M	no RASs	n.d.	L31M Y93H	L159F C316N		oatients	Ү93Н	S282T*	n.d.	L28M	S282T
ledipasvir/ sofosbuvir	n.d.	Q30H/R L31M Y93H	S282T*	n.d.	L31M Y93H	L159F S282T* C316N	not ap	oplicable	no RASs	no RASs	n.d.	L28M Y93C/H	S282T
3D/2D	R155K D168V	M28T/V Q30R	S556G	Y56H D168V	Y93H	L159F C316N S556G		oplicable	not app	blicable	Y56H D168V	L28V Y93H	n.d.
sofosbuvir/ribavirin± pegylated-interferon		n.d.	no RASs	n.d.	n.d.	L159F C316N	n.d.	no RASs	n.d.	L159F*	n	ot applica	able

Table 1: Summary of the most frequent treatment-selected RASs according to the HCV genotype and treatment regimen. These characteristic RASs were defined to have a more than 10% increased prevalence after treatment failure compared to DAA-naïve patients (exceptions are marked with asterisks). The color refers the level of resistance conferred by the respective RAS.

Dietz J et al., Gastroenterology 2017

Despite the excellent efficacy of DAA containing regimens, virological failures can occur, often associated with development of resistance and with differences according to the type of regimen and HCV genotype

	GT1a			GT1b GT2		ST2	GT3		GT4					
	NS3	NS5A	NS5B	NS3	NS5A	NS5B	NS5A	NS5B	NS5A	NS5B	NS3	NS5A	NS5B	
Under	st	an	din	g	m	or	e	ab	out	t R		Ss	m	ay
help u	IS	lea	nrn	V	vh	y	th	ej	pat	ien	nts	fa	ile	ed,
and m	ay	al	low	, 0	pt	im	iz	ati	on	of	tre	eat	me	nt
to oth	er	ľ	lew	,	ра	tie	ent	Ś	&	re	tre	eat a	me	nt
[choice	S .													

characteristic RASs were defined to have a more than 10% increased prevalence after treatment failure compared to DAA-naïve patients (exceptions are marked with asterisks). The color refers the level of resistance conferred by the respective RAS.

Also virological failures to new DAAs occur with resistance

20 out of 1,778 patients (1.1%) treated **Sofosbuvir/Velpatasvir** with for 12 weeks experienced virologic failure: 7 infected with GT1, 12 infected with GT3, and 1 infected with GT4 HCV

Number of	GT	NS5A RASs				NS5B NI RASs	
patients		Baseline (%)	Ref FC VEL at baseline	Virologic failure (%)	Ref FC VEL ^a at virologic failure	Baseline (%)	Virologic failure (%)
n = 2	1a	None	0.8ª	Y93N (>99%) or Y93N (91.9%)	805ª	None	None
n = 1	1a	None	NA	Y93H (>99%)	609 ^b	None	None
n = 2	1a	None	NA	None	NA	None	None
n = 1	1b	L31M (>99%) Y93H (>99%)	44 ^b	L31M (>99%) Y93H (>99%)	ND	V321I (94.1%)	V321I (>99%)
n = 1	1c/1h	Q30R (98.7%) L31M (>99%)	1.4ª	Q30R (>99%) L31M (88.4%) Y93H (72.3%)	763ª	None	None
n = 2	3a	Y93H (>99%)	347-1,073ª	Y93H (>99%)	302-1,221ª	None	None
n = 1	3a	Y93H (15.2%)	724 ^b	Y93H (>99%)	724 ^b	None	None
n = 1	3a	A30K (>99%)	30 ^{a,} 50 ^b	A30K (>99%) Y93H (97.2%)	35154ª	None	None
n = 8	3a	None	0.2-1.3ª	Y93H (>99%)	74-1,138ª	None	None
n = 1	4a	None	ND	None	ND	None	None

Ref FC VEL = VEL half-maximal effective concentration fold change from reference; NA, not applicable.

GT, genotype; HCV, hepatitis C virus; RAS, resistance-associated substitution; SVR12, sustained virologic response at 12 weeks; VEL, velpatasvir.

^a Susceptibility to velpatasvir was evaluated using patient isolates.

^b Susceptibility to velpatasvir was evaluated using site-directed mutant and compared to wild-type replicon.

The overall prevalence of Y93H/N across all genotypes was 2.8% (49/1773) at baseline and 84% (16/20) at virologic failure, respectively. Only one patient with a GT1b infection had V321I NS5B NI RAS at baseline and virologic failure. No sofosbuvir NS5B RASs were observed at baseline or virologic failure in these 20 patients

Hezode et al J of Hepatology 2018

Also virological failures to new DAAs occur with resistance

High SVR12 with 8/12-week **Glecaprevir/Pibrentasvir**: Integrated analysis of HCV Genotype 1-6 2041 patients without cirrhosis. In the ITT population, 943/965 (98%) and 1060/1076 (99%) of patients achieved SVR12 when treated for 8 and 12 weeks, respectively

eTable 3. Patients with Virologic Failure: NS3 and NS5A Polymorphisms/Substitutions at Baseline and Time of Failure

			NS3 Va	ariants	NS5	A Variants
Treatment Duration	HCV Subtype	Failure	Baseline	At Failure	Baseline	At Failure
ENDURANCE-1						
8 weeks	1a	Failed to Suppress	None	A156V	None	Q30R + L31M + H58D
SURVEYOR-II			·			
8 weeks	2a	Relapse	None	None	L31M	L31M
8 weeks	2a	Relapse	None	None	L31M	L31M
ENDURANCE-3						
8 weeks	3a	Relapse	T54S	T54S	None	None
8 weeks	3a	Relapse	None	Q168L	A30K	A30K + Y93H
8 weeks	3a	Relapse	A166S	Y56H, Q168L	A30K	A30K + Y93H
8 weeks	3a	Failed to Suppress	A166S, Q168R	Q80R, A156G	A30K	A30K + Y93H
8 weeks	3a	Relapse	A166S	A166S	None	Y93H
8 weeks	3a	Relapse	None	Y56H	A30K	A30K + Y93H
12 weeks	3a	Relapse	None	Reinfection	None	Reinfection
12 weeks	3a	Breakthrough	Q168R	Y56H+Q168R	A30K/V, Y93H	A30K + Y93H
12 weeks	3a	Relapse	None	None	None	A30G, Y93H
12 weeks	3b	Relapse	None	Q80K	V31M	V31M + Y93H

Detection of baseline polymorphisms and treatment-emergent substitutions was done with next-generation sequencing using a 15% detection threshold. For samples with multiple variants (polymorphisms/substitutions) within a target, if individual variants were detected at ≥90% prevalence, they are considered to be linked and denoted by "+", whereas if one or more of the variants was detected at <90% prevalence, the variants are separated by a comma

Amino acid positions included in analysis of patients with GT1: 36, 43, 54, 55, 56, 80, 155, 156, 168 in NS3; 24, 28, 29, 30, 31, 32, 58, 62, 92, 93 in NS5A

Amino acid positions included in analysis of patients with GT2 or GT3: 36, 43, 54, 55, 56, 80, 155, 156, 166, 168 in NS3; 24, 28, 29, 30, 31, 32, 58, 92, 93 in NS5A

Puoti et al., J of Hepatol 2018

Patient: 47 years, male, with GT3 started Gle/Pib (16 weeks) with high viral load (5,787,000 IU/ml), F3, 266 IU/ml at 10d, 90 IU/ml at 21d, 1739 IU/ml at 5w, 46395 IU/ml at 7w.

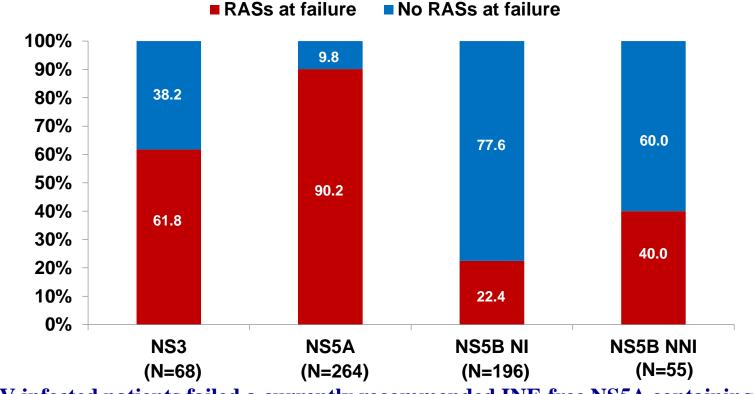
geno2pheno®

Sample with 1739 III/

II. Sequence info

HCV resistance prediction from genotype (version 1.0)

II. Sequence information

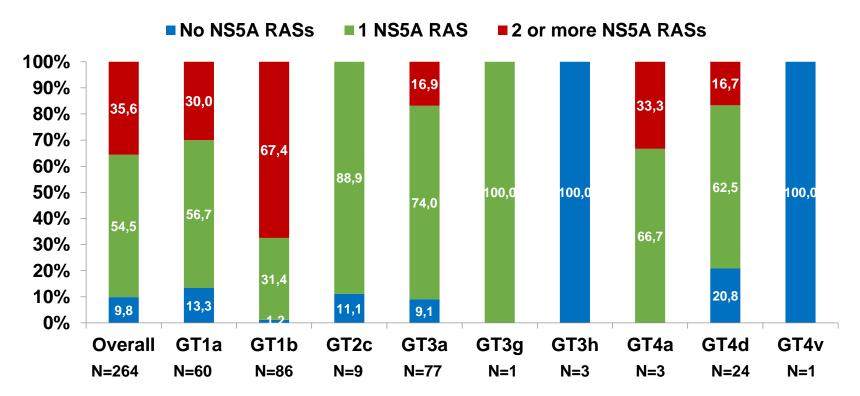

NS5A codons covered	1 - 163	NS3 codons covered 17-181
NS5A region (w.r.t. D17763)	T7D, A17S, A21T, A30K, R48GR, A62S, A75AV, T79A, Y93H, S103A, A147P	NS3 region (w.r.t. D17763)
NS5A region (w.r.t. H77)	S3D, 112V, E14S, K24S, L27I, Q30K, I34L, V37I, R41K, R44K, R48GR, I52V, H54S, H58P, E62S T71S, I74L, V75AV, T79A, R81A, S85H, A92E, Y93H, C98S, L101C, K107T, F108R, S114 E116N, E117S, I121V, V130I, S131T, M133A, T135E, N137E, I144V, S146A, L184	nted one of

The patient had at baseline the NS5A RAS A30K

E	id the s	nutations	\mathbf{U}	susceptible	none	
Le			coprevir	not licensed for subtype	not available	
Om V	10.	111210-	Paritaprevir	not licensed for subtype	not available	
Pibr	×	nutur	Simeprevir	not licensed for subtype	not available	
Velpa	L		Telaprevir	not licensed for subtype	not available	
L cipe			Voxilaprevir	substitution on scored position	156G,170I	
Q/F	D , E, <u>K</u> , <u>R</u> <u>G</u> , <u>K</u> *	D: 95 E: 2 K: 1 * R: 2	A156	<u>G</u> , <u>T</u> , ⊻ T, V <u>G</u>		G: 1654 * T: 1400, 630 V:1800
Y/T93	С, <u>H</u> , N H, N <u>H</u> *	C: 1 H: 7, 1, 2-3* N: 7, <2		Sorbo MC ,	et al Drug Resistan	ce Update 2018
	A30K+Y93H	70 *				
20+03	Q30H+Y93H	17				
30+93	Q30R+Y93H	260				
	Q30R+Y93N	131				

RASs prevalence was found in all genes tested: <u>NS5A very frequent (90.2%)</u>, NS3 frequent (61.8%), NS5B less common (22.4% NI and 40.0% NNI)

RASs prevalence at failure was high in almost all HCV genotypes/subtypes

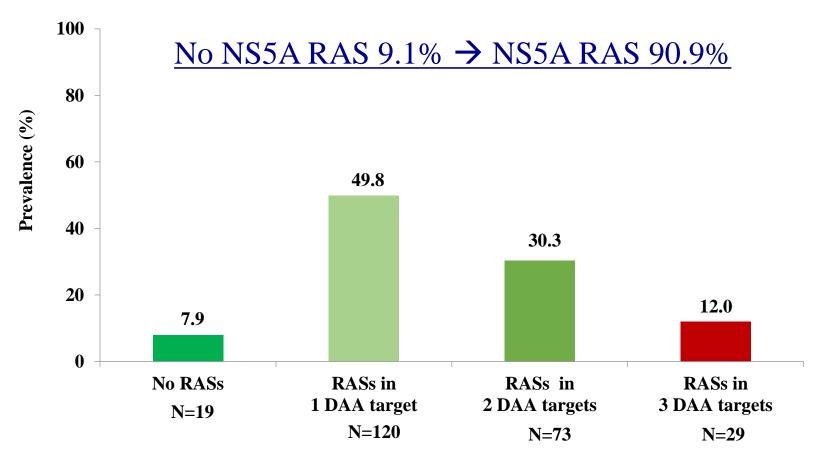


264 HCV-infected patients failed a currently recommended INF-free NS5A containing regimen

UPDATE of Vironet C from Di Maio VC et al. J Hepatol. 2017 Di Maio VC et al European Drug Resistance Workshop 2018

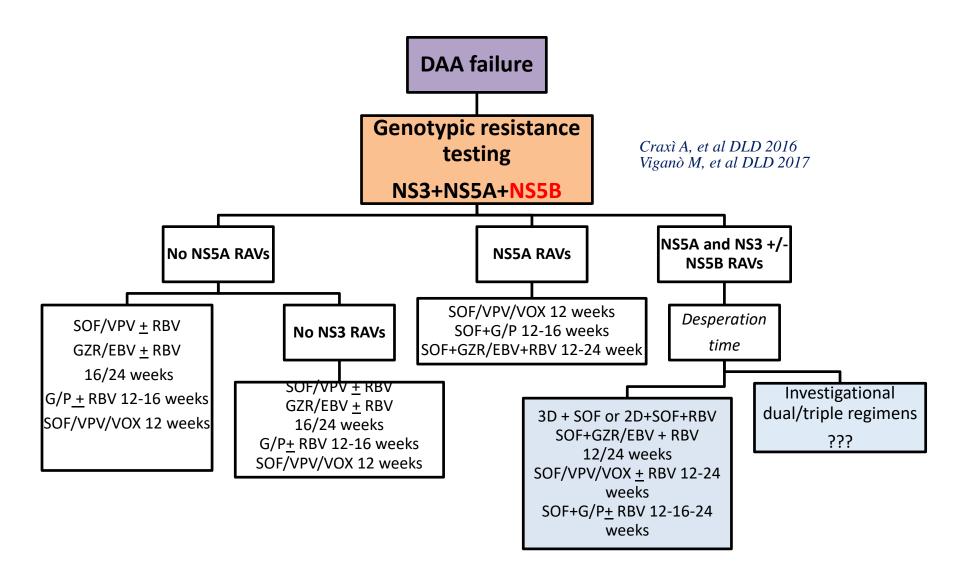
94/264 (35.6%) of NS5A-failing patients presented ≥2 NS5A-RASs

9.8% (26/264) of DAA failing patients didn't show NS5A RASs at failure



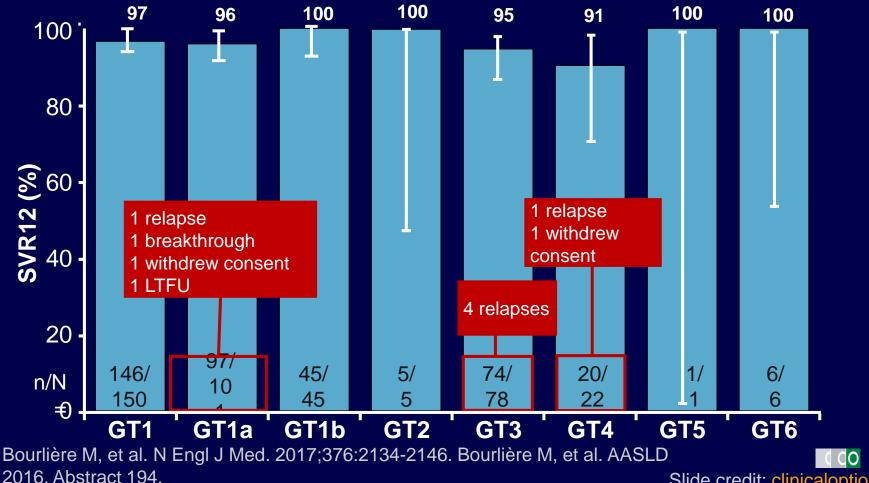
*One GT3h infected patient who experienced a virological failure to daclatasvir+sofosbuvir regimen showed the major SOF RAS S282T in NS5B gene.

UPDATE of Vironet C from Di Maio VC et al. J Hepatol. 2017 Di Maio VC et al European Drug Resistance Workshop 2018


42.3% HCV-infected patients that failed a currently recommended INF-free NS5A containing regimen showed RASs on ≥2 DAA-targets at failure

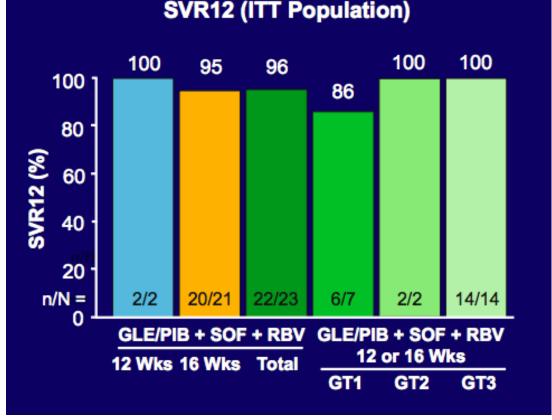
All patients were treated with ≥ 2 DAA classes

UPDATE of Vironet C from Di Maio VC et al. J Hepatol. 2017 Di Maio VC et al European Drug Resistance Workshop 2018


Retreatment may require «unconventional» approaches with multiple DAAs

Modified by Wyles D, AASLD 2015

POLARIS-1: SVR12 by Genotype With 12-Wk SOF/VEL/VOX in NS5A Inhibitor-**Experienced Pts**


Only 1 GT4 pt developed a treatment-emergent RAS (NS5A Y93H)

Slide credit: clinicaloptions.cor

MAGELLAN-3: GLE/PIB + SOF + RBV for 12-16 weeks for Retreatment After Failure of GLE/PIB

(N = 23)

VF occurred in 1 patient in 16-wk arm

GT1a HCV infection, cirrhosis, previous LDV/SOF, NS5A RAS (Q30K + Y93H), and no NS3 RAS at MAGELLAN-3 BL (but at previous G/P failure A156V)

Baseline RAS:

NS5A RAS detected in 18 (78%) of 23 patients

- 12-wk arm: 2/2
- 16-wk arm: 16/21

NS3 + NS5A RAS detected in 5/23 patients, all in 16-wk arm

12 w: Non-cirrhotic patients with GT1,2,4,5,6 HCV infection \pm HIV coinfection with VF on/after GLE/PIB \pm no previous NS5AI or PI (N = 2)

16 w: Cirrhotic and non-cirrhotic patients with GT1-6 HCV infection ± HIV coinfection with VF on/after GLE/PIB ± **previous NS5AI or PI** (N = 21)

Wyles D, et al. EASL 2018

Retreatment of DAA Failures

- HCV resistance testing useful to guide retreatment
- Recommendations for patients who experienced DAA regimen (PI and/or NS5AI) failure: management should be in context of multidisciplinary team including experienced treaters and virologists

Failure of DAA (PI and/or NS5AI)-Containing Regimen	Retreatment Recommendation
\pm Compensated cirrhosis	SOF/VEL/VOX for 12 wks
± Compensated cirrhosis with predictors of lower response*	GLE/PIB + SOF for 12 wks ^{\dagger}
Very difficult to cure: NS5A RASs after 2 failures of PI and/or NS5AI-containing regimens	SOF/VEL/VOX or GLE/PIB + SOF: + RBV for 12 wks, no RBV for 16-24 wks, or + RBV for 16-24 wks [†]
Decompensated cirrhosis	SOF/VEL + RBV for 24 wks ^{\dagger}

*Advanced liver disease, multiple courses of DAA-based treatment, complex NS5A RAS profile. *Based on individual decision.

EASL recommendations on the treatment of hepatitis C 2018. J Hepatol 2018

Summary & Conclusions HCV - a curable disease

We can cure HCV. SVR a validated surrogate of clinical efficacy because it predicts long-term clinical benefit.

To cure everyone with HCV we need to find it!!!

When we have found it we need to treat it properly!! Accurate diagnostics and treatment will be key to reduce HCV infections and therefore to reduce the HCC HCVrelated.

However, only a small proportion of infected persons are likely to have access to new therapies in most countries!!!!!

Conclusions

SVR rates are very high with new IFN-free regimens (in both mono and coinfected HIV populations)...2-5-10% virologic failures = 1.2-17 million patients with antiviral resistance worldwide...Patients with advanced liver diseases are more difficult to treat. Newer DAAs might not be universally available.

Prior treatment (DAA-naive patient):

HCV-RNA load, HCV genotyping and HCV resistance testing can support personalized-treatment (adjustment for duration, RBV-use? and choise of regimen) leading to near 100% SVR. Important for particular patients (e.g. GT3) *vs* all patients? **After failure, prior to retreatment (DAA-experienced patient):**

It is necessary to verify all the possible causes of virologic failure, including: incorrect genotype, poor compliance, suboptimal treatment, and potential reinfection.
HCV resistance testing prior to retreatment is helpful to make a decision if reliable resistance testing is available. <u>The resistance test should be performed in all 3 genes</u> NS3+NS5A+NS5B in all infected patients independently of HCV genotype, and of the failure regimen. Retreatment can be guided by probabilities of response according to the resistance profile observed in the context of an experienced multidisciplinary team (complexity: virus, host, clinical aspects, previous treatment outcome, DAA)
HCV sequencing can be based on Sanger population method and should also confirm the previous genotype and subtype assignment.

Acknowledgements

Università degli Studi di Roma "Tor Vergata": FP Antonucci, M Aragri, S Barbaliscia, A Bertoli, MC Bellocchi, L Carioti, R Campoli, D Di Carlo, VC Di Maio, K Yu La Rosa, M Santoro, MC Sorbo, V Svicher

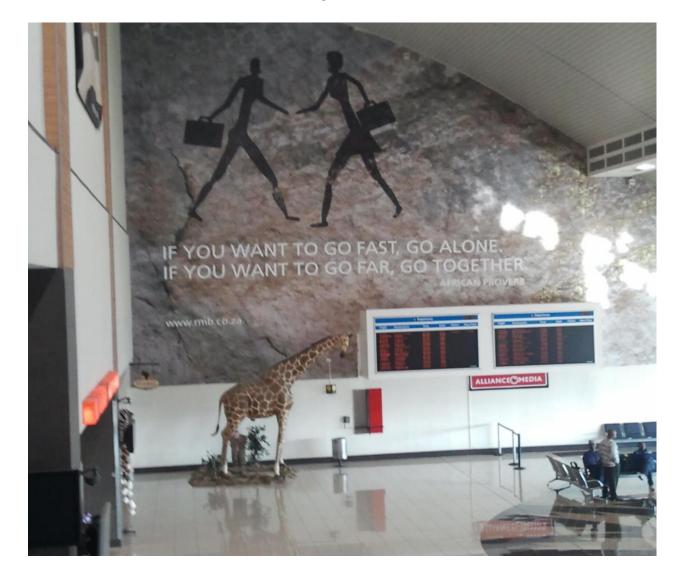
Fondazione Policlinico Tor Vergata, Roma: M Andreoni, M Angelico, L Baiocchi, M Ciotti, F De Leonardis, C. Favalli, S Francioso, T Guenci, I Lenci, F Marcuccilli, C Masetti, M Milana, PP Paba, P Rossi, C Sarrecchia, L Sarmati, V Serafini, F Stazi, E Teti

ASST Grande Ospedale Metropolitano Niguarda, Università degli Studi di Milano: V Cento, CF Perno

HCV Virology Italian Resistance Network : VIRONET-C

VIRONET-C BOARD: F Ceccherini-Silberstein (Vice-president), A Craxì (President), M Andreoni, CF Perno, M Puoti, M Zazzi

STEERING COMMITTEE: S Bonora,


M Brunetto, AP Callegaro, MR Capobianchi, V Cento, GB Gaeta, G Raimondo, T Santantonio

VIROLOGISTS PARTICIPATING and PHYSICIANS: A Aghemo (Milano); A Alberti (Padova); T Allice (Torino); P Andreone (Bologna); M Andreoni (Roma); G Angarano (Bari); M Angelico (Roma); A Antinori (Roma); G Antonelli (Roma); M Aragri (Roma); S Babudieri (Sassari); P Bagnarelli (Ancona); F Baldanti (Pavia); F Baldelli (Perugia); G Barbarini (Pavia); B Bartolini (Roma); ML Biondi (Milano); E Boeri (Milano); S Bonora (Torino); V Borghi (Modena); S Brillanti (Bologna); M Brunetto (Pisa); R Bruno (Pavia); S Bruno (Milano); B Bruzzone (Genova); F Caccuri (Brescia); AP Callegaro (Bergamo); V Calvaruso (Palermo) MR Capobianchi (Roma); N Caporaso (Napoli); G Cariti (Torino); A Caruso (Brescia); C Caudai (Siena); D Cavallone (Pisa); F Ceccherini-Silberstein (Roma); V Cento (Milano); A Ciaccio (Monza); A Ciancio (Torino); A Cingolani (Roma);

M Clementi (Milano); G Coinu (Sassari); P Colombatto (Pisa); N Coppola (Napoli); R Cozzolongo (Bari); A Craxì (Palermo); N Cuomo (Napoli); R D'Ambrosio (Milano); A D'Arminio Monforte (Milano); E Degasperi (Milano); A de Luca (Siena); F Di Lorenzo (Palermo); VC Di Maio (Roma); M Di Stefano (Foggia); G D'Offizi (Roma); S Fagiuoli (Bergamo); C Ferrari (Parma); A Focà (Catanzaro); G Foti (Reggio Calabria); M Galli (Milano); S Galli (Bologna); GB Gaeta (Napoli); E Galmozzi (Milano); AR Garbuglia (Roma); W Gennari (Modena); V Ghisetti (Torino); A Giacometti (Ancona); A Giorgini (Milano); A Gori (Monza); A Grieco (Roma); H Hasson (Milano); A Lai (Milano); P Lampertico (Milano); M Levrero (Roma); A Licata (Palermo); R Lionetti (Roma); F Maggiolo (Bergamo); S Malandrin (Monza); N Marascio (Catanzaro); S Marenco (Genova); M Marignani (Roma); C Mastroianni (Latina), S Menzo (Ancona); V Messina (Caserta); V Micheli (Milano); L Monno (Bari); F Morisco (Napoli); G Morsica (Milano); C Mussini (Modena); LA Nicolini (Genova); V Pace Palitti (Pescara); S Paolucci (Pavia); S Parisi (Padova); G Parruti (Pescara); C Pasquazzi (Roma); D Pecori (Udine); A Pellicelli (Roma); MO Pensi (Terni-Foligno); CF

Perno (Milano); M Persico (Salerno); S Petta (Palermo); A Picciotto (Genova); E Polilli (Pescara); T Pollicino (Messina); ML Ponti (Cagliari); G Portella (Napoli); T Prestileo (Palermo); M Puoti (Milano); M Quartini (Terni); G Raimondo (Messina); MC Re (Bologna); M Rendina (Bari); G Rizzardini (Milano); D Romagnoli (Baggiovara); T Ruggiero (Torino); MG Rumi (Milano); FP Russo (Padova); M Sanguinetti (Roma); R Santangelo (Roma); T Santantonio (Foggia); V Sangiovanni (Napoli); A Saracino (Bari); L Sarmati (Roma); M Siciliano (Roma); O Schioppa (Aviano, Pordenone); A Soria (Monza); L Sticchi (Genova); M Strazzabosco (Monza); V Svicher (Roma); G Taliani (Roma); G Tarantino (Ancona); P Toniutto (Udine); C Torti (Catanzaro); ML Vatteroni (Pisa); M Viganò (Milano); V Vullo (Roma); S Zanussi (Aviano, Pordenone); M Zazzi (Siena); AL Zignego (Firenze); M Zuin (Milano).

Thanks for your attention

