Investigating the separate effects of venous outflow and breathing on the cranio-spinal CSF flow dynamics using two types of phase contrast sequences (Conventional and real time)

Noam Alperin, PhD

Department of Radiology and Biomedical Engineering University of Miami

Cine Pulsatile Blood and CSF Flows

Blood Flow to and From the Brain

Sagittal CSF Flow

Axial CSF Flow

Phase Contrast MRI

Spins moving in a magnetic field gradient will change their frequency and therefore their phase will change with respect to static spins

Frequency a Field Strength

Cine Phase Contrast MRI

Currently, data acquisition use prospective triggering or retrospective gating.

Cine PC does not capture physiologic beat-to-beat variations due to respiration or other manipulations.

Waveforms obtained using cine PC are an averaged cardiac cycle reconstructed using data acquired over multiple heartbeats.

Cranio-spinal CSF flow

Cranio-spinal CSF flow is driven by the difference between arterial inflow (A) and venous outflow (V)¹. This coupling is modulated by the intracranial **compliance**, which is inversely related to ICP.

1- Alperin et al. Hemodynamically independent analysis of CSF and brain motion. Magn. Reson. in Med. 35:741–754 (1996)

CS-CSF Vs. Arterial – Venous flow

Real-Time Cine Phase Contrast

Recent advances enable significantly shorter scan time per image by combining several acceleration methods:

- 1. Echo planar imaging (EPI) readout.
- 2. Parallel acceleration in the temporal direction (T-PAT).
- 3. Novel reconstruction shared velocity encoding (1)

Current efforts focus primarily on cardiac imaging. <u>This</u> work implemented real-time cine PC for measurements of cerebral blood and CSF flows.

Methods

- Two healthy subjects were scanned with a 3T scanner (Skyra, Siemens Healthcare).
- Total CBF was obtained by summation of volumetric flow rate through the internal carotid and vertebral arteries.
- Both conventional Cine and real-time PC were used to measures arterial inflow, venous outflow and craniospinal CSF. Duration for each scan was about 1 min.
- Lumens were automatically delineated using the Pulsatility Based Segmentation (PUBS) method (1) which incorporates temporal information in each voxel to differentiate lumen pixels from background pixels.

[1]. Alperin N, Lee SH. Magn Reson Med 2003;49:934-944

Results

	Real Time PC	Cine PC
Total CBF (mL/min)	572 [47.7]	646
peak-to-peak (mL/min)	499 (51.5)	559
peak-to-peak range	368 to 602	

Results

TCBF - Cine

Real-Time and Conventional Cine PC

Automated analysis of the RT Vascular Cine Data

MRICP [SMS] - 10_15_RTF\S17_RTflow_bf_rl_low_loc_PCopy				
File Tools View Configure Reports Help				
🕞 📙 🎒 🎬 🐩 🔐 BF CSF 🛛 Anatomy Velocity(m)	Velocity(um) 🖓 🥋 🥎 🏭 🐇 🥒 🔳 🕨 🥐 🍭			
Measure Total CBF Measure Venous Outflow Measure CSF-Spine Measure CSF-Aqueduct	Lumen Waveform tCBF Venous CSF-Spine CS Report Report Report Report Report			
	Lumen: Image: Segmented Lumens: Show All Clear All Image: Imag			

Real-time Arterial Flow

RICA

Total CBF = RICA+LICA+LVA+RVA

Real-time Venous Outflow

Respiratory Cycle (15cyc/min)

Real-time Venous Flow During Breath-Hold

5 deep breathes – breath hold – 3 breathes

Automated analysis of the RT CSF Cine Data

MRICP [SMS] - 5_RTF\S29_RTflow_csf_v7_1min_rl_P - Copy		
File Tools View Configure Reports Help		
🗃 💾 🎒 📅 🞆 BF CSF Anatomy Velocity(m)	Velocity(um) $\mathcal{O}_A \mathcal{O}_M \bigcirc \mathcal{O}_M \overset{\sim}{\circledast} \mathscr{X}$	
Measure Total CBF Measure Venous Outflow Measure CSF-Spine Measure CSF-Aqueduct	Lumen Waveform tCBF Report Report Report	Venous CSF- Spine CSF Report Report
	Lumen: Segmented Lumens: Show All Clear All Save Modify Delete Manual BG Reset BG Alias Correction	Infomation: Name: Area (mm^2): Flow rate eW/SS (dyne/cm^2): Summary

Real-time Cranio-spinal CSF Flow

Conclusion

- The feasibility of automated real-time measurements of total arterial, venous, and CSF flows has been demonstrated.
- RT measurements have lower SNR and temporal resolution resulting with lower mean flow rates than cine PC but within physiological fluctuations range.
- Cranio-spinal CSF flow is modulated by cardiac (arterial minus venous flow) and breathing (primarily, through modulation of the venous outflow).
- The amount of CSF volume moving between the cranium and spinal canal due to cardiac and normal breathing is on the order of 0.5 and 1 mL, respectively.

Ho imparato così tanto grazie a te