

Arterial Pulsatility, Cognitive Decline and Dementia

SCOTT CHIESA, PhD

Vascular Physiology Unit UCL Institute of Cardiovascular Science

The Brain Protection Company

Disclosures

Research Funding: The Brain Protection Company Ltd.

Ageing, Pulsatility, and the Brain

Predominant form of hypertension from mid-life is isolated systolic hypertension

Results from stiffening of major elastic arteries and subsequent increase in pulse pressure

Potential for end-organ damage, particularly in low resistance / high flow vascular beds such as kidney and brain

De Montgolfier et al 2019 Hypertension 73:217-228

Strength of Evidence

Human Studies

MRI changes / Cognitive Decline / Dementia related to:

Aortic Stiffness

Carotid Stiffness Systolic / Pulse Pressures Surrogate markers

Can we quantify the pulsatile energy that the brain may actually 'see'?

Animal Studies

Induced arterial stiffness / increased pulsatility (e.g. arterial ligation/carotid calcification/etc)

Increased inflammation

Increased ROS

Endothelial Dysfunction

BBB Dysfunction

Cell Apoptosis

Microhaemorrhages

Carotid Wave Intensity Analysis

Performed non-invasively in the common carotid artery using duplex Doppler ultrasound

Simultaneous measures of vessel diameter and blood velocity used to calculate wave intensity

Allows energy transfer per unit area <u>and</u> direction of wave travel to be determined

The Whitehall II Study

- Ongoing cohort study of persons originally employed by the British Civil Service
 - 10,308 persons aged 33-55 recruited at start of study between 1985-1988
- Extensive phenotyping over twelve phases of data collection since then latest 2015-2016

2002

2002-2016

DemographicsCarotid Structure and StiffnessCoCV Risk FactorsCarotid Wave IntensityDerDisease OutcomesAortic Stiffness

Dementia Diagnosis

Cerebral MRI

Cognitive Assessments

- Test battery administered in four phases (2002-2016).
- Comprising individual domains testing memory, executive function, and fluency (both semantic and phonemic).
- Global cognitive score created using individual domains and mixed linear models used to create trajectories of decline for each.

Sabia et al 2017 BMJ 357: j2079

The transmission of high intensity pulsatile waves towards the cerebral circulation in midto late-life (~ 60 years of age) will be associated with accelerated cognitive decline in prospective follow-up (11-14 years)

Baseline Characteristics

	Basalina ann	[Mean (SD) or %]				
	Baseline caro	Baseline carotid forward compression wave intensity quartile				
	Ouartile (01)	Quartile 2	Quartile 5	Ouartile (04)	neterogeneity	
	Quartic (Q1)			quartic (q4)		
Number	781	813	811	786		
Age, v	61.2 (5.8)	60.3 (5.6)	60.7 (5.8)	60.8 (5.9)	0.01	
Female, %	39.1	26.2	18.3	17.1	< 0.001	
Ethnicity					0.07	
- White	92.3	94.1	93.5	93.0		
- Non-White	7.7	5.9	6.5	7.0		
BMI (kg/m ²)					< 0.001	
- Underweight (<20.0)	4.4	3.6	2.2	2.2		
- Normal weight (20.0 - 24.9)	39.8	36.8	38.2	28.1		
- Overweight (25.0 – 29.9)	38.9	38.2	45.5	48.4		
- Obese (≥ 30.0)	16.9	28.1	14.1	21.4		
Wave Intensity (mmHg/m/s³)	4795 (923)	7115 (582)	9401 (780)	14949 (4563)	<0.001	
Blood Pressure (mmHg)						
 Systolic Blood Pressure 	122.7 (12.9)	127.4 (13.8)	130.3 (13.4)	137.0 (14.2)	< 0.001	
- Pulse Pressure	44.9 (7.3)	49.5 (7.3)	52.7 (7.6)	58.4 (8.8)	< 0.001	
 Diastolic Blood Pressure 	77.8 (8.6)	78.0 (9.2)	77.6 (8.8)	78.6 (8.9)	0.18	
- Mean Arterial Pressure	92.8 (9.6)	94.5 (10.4)	95.2 (9.9)	98.0 (10.1)	< 0.001	
Education					0.09	
 ≤ Lower secondary 	37.9	34.3	31.3	32.2		
- Higher secondary	27.3	28.5	29.5	27.2		
- ≥ Degree	34.8	37.2	39.2	40.6		
Employment grade					0.01	
- High	44.6	49.2	50.1	51.2		
- Intermediate	45.8	43.9	44.8	41.6		
- Low	9.6	6.9	5.2	7.3		
Diabetes, %	5.8	4.3	6.5	10.6	< 0.001	

Chiesa et al 2019 Eur Heart J doi: 10.1093/eurheartj/ehz189

Results

Carotid FCWI		Global cognitive score	Memory	AH4	Phonemic fluency	Semantic fluency
	-					
Effect per 1 SD increase		-0.02 (-0.04, -0.00) p=0.03	-0.02 (-0.05, 0.01) p=0.10	-0.01 (-0.02, 0.01) p=0.24	-0.03 (-0.05, 0.00) p=0.06	-0.01 (-0.03, 0.02) p=0.56
Quartiles 1-3		0.0 (Reference)	0.0 (Reference)	0.0 (Reference)	0.0 (Reference)	0.0 (Reference)
Quartile 4		-0.05 (-0.09, -0.01) p=0.01	-0.02 (-0.09, 0.04) p=0.45	-0.04 (-0.07, -0.00) p=0.03	-0.09 (-0.14, -0.03) p=0.004	-0.01 (-0.06, 0.04) p=0.67

of additional 'cognitive ageing' during follow-up

Chiesa et al 2019 Eur Heart J doi: 10.1093/eurheartj/ehz189

		Baseline FCWI (N=3191)		
		Lowest 75%	Highest 25%	
		(N=2405)	(N=786)	
Outcome	The 15% of participants with the greatest	341 (14.2%)	155 (19.7%)	
	cognitive decline over the follow-up			
Model	Adjustments	Odds ratio (95% Cl)		
	Unadiustad	1.0	4 40 (4 04 4 02)	
IVIU	Unadjusted	1.0	1.49 (1.21, 1.83)	
M1	M0 + age, sex	1.0	1.51 (1.21, 1.88)	
M2	M1 + ethnicity, education, employment grade	1.0	1.51 (1.21, 1.88)	
M3	M2 + smoking alcohol consumption physical	1.0	1 50 (1 20 1 97)	
INIS	activity	1.0	1.50 (1.20, 1.87)	
M4	M3 + systolic blood pressure	10	1 51 (1 20 1 91)	
M5	M4 + GHQ caseness, hypertension, diabetes, BMI	1.0	1.49 (1.17, 1.88)	
	category, history of CVD, atrial fibrillation,			
	physical component score			

Risk of accelerated cognitive decline increased by 50% in individuals with highest FCWI in mid- to late-life

Chiesa et al 2019 Eur Heart J doi: 10.1093/eurheartj/ehz189

What causes increased FCWI?

Arterial Stiffness

Adjusted for age, sex, ethnicity, BMI, and MAP

Chiesa et al - unpublished data

Structural Changes

 Can we also link wave intensity / arterial stiffness to structural changes within the brains of these participants?

Ongoing, but promising!

Lower Fractional Anisotropy

Higher Mean Diffusivity

Higher Radial Diffusivity

Adjusted for age, sex, ethnicity, education, MAP, and BMI

Unpublished data courtesy of Whitehall Imaging Oxford

To summarise

- **UCL**
- Carotid wave intensity analysis can be used to quantify the intensity of pulsatile waves transmitted towards the fragile cerebral microcirculation with each beat of the heart.
- High forward compression wave intensity in mid- to late-life predicts accelerated cognitive decline during long-term follow-up.
- Despite their detection in the carotid artery, the presence of these high intensity waves appears to be more closely related to accelerated stiffening of the aorta
- These changes are (probably!) related to structural changes within the brain detected by MRI, which may mediate the relationship between systemic arterial changes and cognitive decline.

Many thanks to:

Vascular Physiology Unit, UCL Whitehall II Study, UCL Whitehall Imaging Oxford, University of Oxford

The Brain Protection Company

