

CONCURRENT ASSESSMENT OF PERFUSION AND FUNCTIONAL CONNECTIVITY IN PARKINSON'S DISEASE

Maria Marcella Laganà¹, Alice Pirastru¹, Laura Pelizzari¹, Niels Bergsland^{1,2}, Mario Clerici^{1,3}, Pietro Cecconi¹, Raffaello Nemni^{1,3}, Francesca Baglio¹

¹ IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy ²Buffalo Neuroimaging Analysis Center, Department of Neurology, School ofMedicine and Biomedical Sciences, University at Buffalo, State University of NewYork, Buffalo, NY, USA ³Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy

Conflicts of interest: all the authors have nothing to disclose

Background

Parkinson's disease: neurodegenerative disorder impairing motor function and cognition

Resting state fMRI

Functional connectivity alterations since the first phases of the disease:

- ↓ in the left occipital cortex^{2,4} and left lingual gyrus⁴
- Visuo-spatial functions

• \downarrow or \uparrow in motor areas^{2,3}

¹Kwak et al., Front in syst neurosc 2012; ²Luo et al, Human brain mapping 2015 ³Wu et al., Human brain mapping 2011.

Brain perfusion - Arterial Spin Labeling

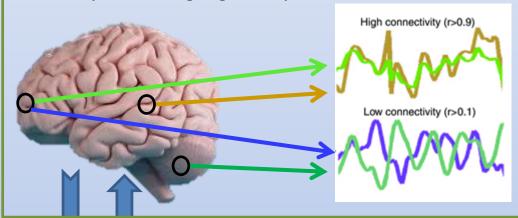
Brain perfusion alterations in people with Parkinson's Disease:

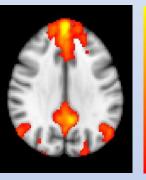
- \$\square\$ posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri⁴
- ↓ left supramarginal gyrus/superior temporal gyrus and left posterior cingulate/precuneus⁵
- ↓ posterior cortex⁶

⁴Melzer et al. Brain 2011; ⁵Syrimi et al. J Neural Transm 2017; ⁶Kamagata et al. JMRI2011

9th Annual Meeting of International

Society for Neurovascular Disease Ferrara, May 30th and 31st, 2019

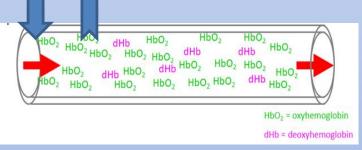



Background

Resting state fMRI

rsfMRI estimates the funtional connectivity of various gray matter regions at rest,

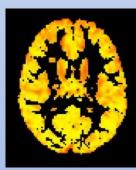
indirectly measuring regional spontaneous neuronal activity



value

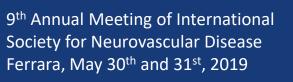
Correlation map (Z-stat map)

Brain perfusion - Arterial Spin Labeling



Capillary:

 $\uparrow \downarrow$ blood flow


↑ ↓ oxy/deoxyhemoglobin

ASL quantitatively estimates amount of blood flow to brain tissue in ml/min/100g, without the need of exogenous contrast agent

Cerebral Blood Flow (CBF)

Demographics

People with Parkinson's Disease (PD) and Healthy controls (HC)

	PD	НС	p-value
N	26	18	
#Males/Females	22/4	11/7	0.093
age	60.0[50.3-79.8]	65.1[51.5-79.7]	0.618
Disease duration	3[1-12]		
H&Y	1.5[1-3]		
Mini-Mental PD (corr)	29.8[17.7-32]		
MoCA_(corr)	23.6[10-27.4]		

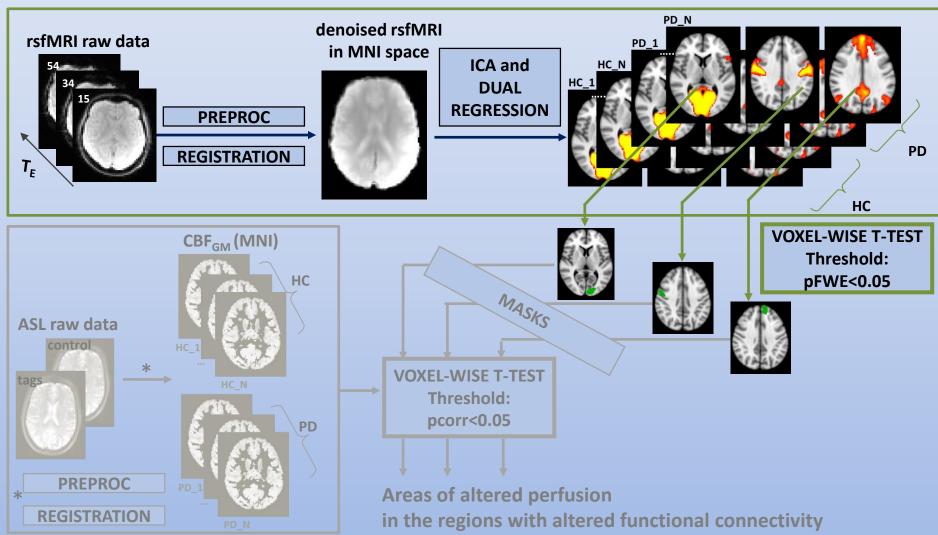
MRI acquisition protocol (1.5T Siemens scanner):

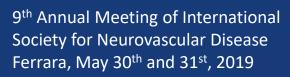
High resolution 3D T1-weighted image

(MPRAGE, TR=1900 ms, TE=3.37 ms, resolution=1×1×1 mm³, 176 axial slices)

(TR=2570 ms; TE=15, 34, 54 ms; resolution=3.7×3.75×4.49 mm³; 31 axial slices)

Multi-delay pseudo-continuous ASL with background suppressed GRASE sequence


(TR/TE=3500/22.58 ms, labeling duration=1500 ms, 5 post-labelling delays=[700, 1200, 1700, 2200, 2700] ms, 12 pairs of tag/control images for each delay, resolution=3.5x3.5x5 mm³, 32 slices)

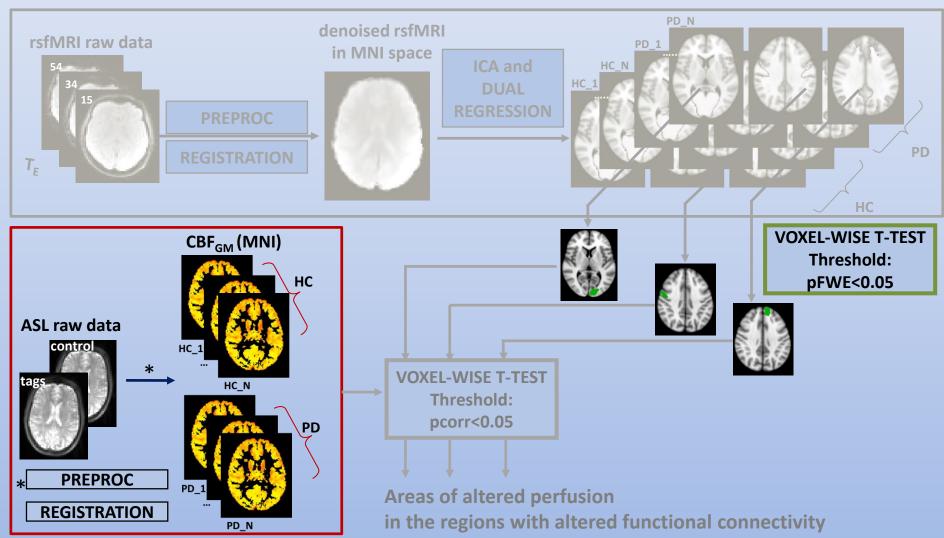


MRI processing and statistics

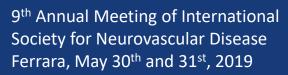
Results

Group ICA Songer 2 Primary visual Leateral visual Leateral Right lateral Task positive Sensory Motor DMN

PD vs HC: areas of significant functional connectivity alterations PD<HC **Lateral visual Primary visual Sensory Motor** < 0.001 Left Occipital Fusiform – values (FWE) Lingual gyr Gyrus Intracalcarine Precentral cortex Gyrus -0.05

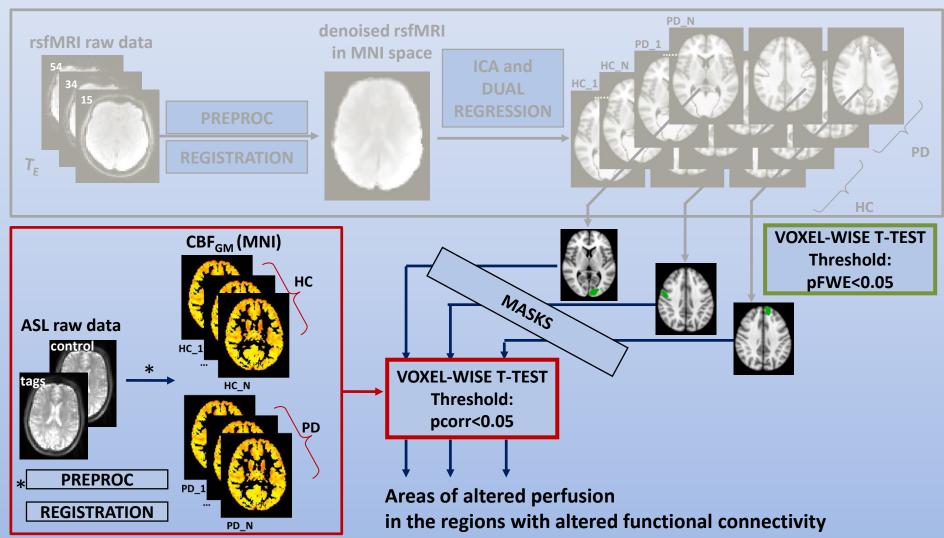


9th Annual Meeting of International Society for Neurovascular Disease Ferrara, May 30th and 31st, 2019

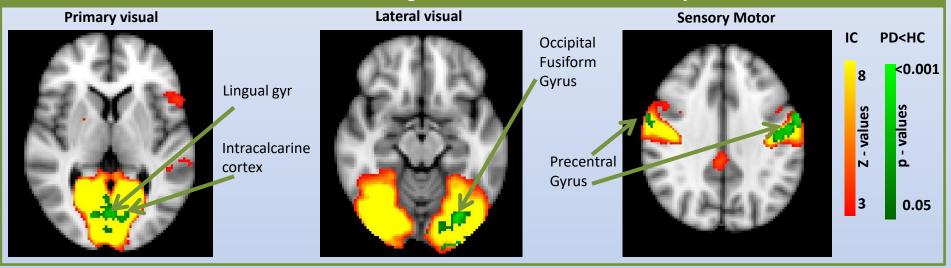


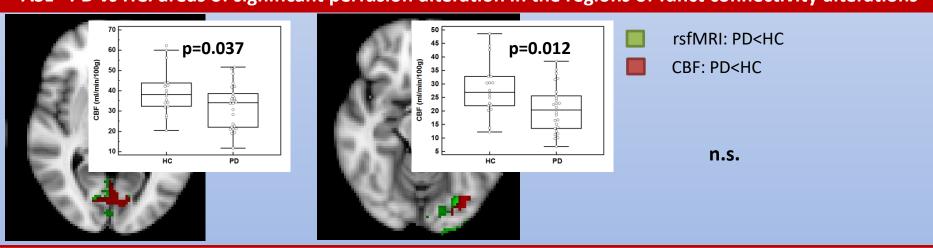
M. Marcella Laganà mlagana@dongnocchi.it

MRI processing and statistics



MRI processing and statistics

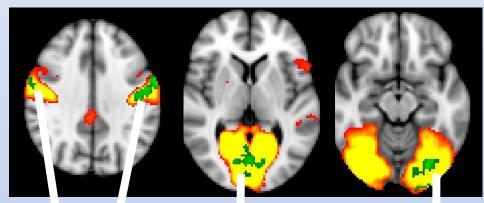


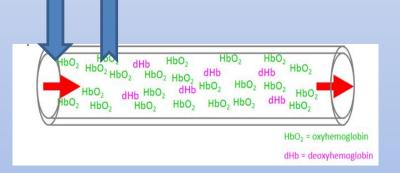


Results

rsfMRI - PD vs HC: areas of significant functional connectivity alterations

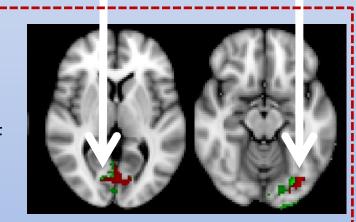
ASL - PD vs HC: areas of significant perfusion alteration in the regions of funct connectivity alterations




Discussion

Resting state fMRI High connectivity (r>0.9) Low connectivity (r>0.1)

Reduced functional connectivity



Brain perfusion - Arterial Spin Labeling

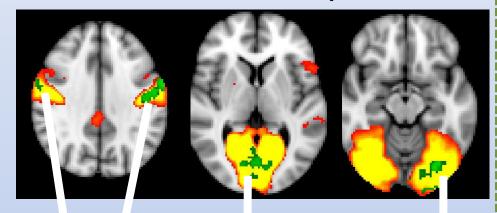
Normal CBF

Reduced functional connectivity or reduced blood flow?

9th Annual Meeting of International

Society for Neurovascular Disease Ferrara, May 30th and 31st, 2019

Conclusion

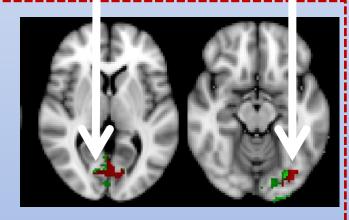

Resting state fMRI

Functional connectivity reduction in the sensorimotor cortex in PD might reflect motor symptoms.

Correlation between the strength of the functional connectivity and the UPDRS-III:

r=-0.442, p=0.031

Reduced functional connectivity



Brain perfusion - Arterial Spin Labeling

Functional connectivity alterations in the visual cortex could be influenced by ↓CBF

- → Longitudinal study
- → Possible clinical improvement if perfusion would be restored?

→ Perfusion alterations have to be considered when interpreting the functional connectivity results

Acknowlegment

Francesca Baglio

Niels Bergsland

Valeria Blasi

Augusto Bonilauri

Francesca Borgnis

Monia Cabinio

Pietro Cecconi

Mario Clerici

Alessia D'Arma

Monica Di Cesare

Sonia Di Tella

Alice Giangiacomo

Sara Isernia

Laura Mendozzi

Raffaello Nemni

Chiara Pagliari

Laura Pelizzari

Alice Pirastru

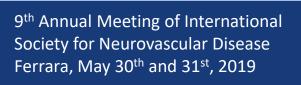
Luigi Pugnetti

Federica Rossetto

Francesca Lea Saibene

Francesca Sangiuliano

Federica Savazzi



D. J. J Wang

Thank you

9th Annual Meeting of International

Society for Neurovascular Disease Ferrara, May 30th and 31st, 2019

