MENIERE'S DISEASE AND INNER-EAR CIRCULATION: A COMPUTATIONAL STUDY

Eleuterio TORO, Morena CELANT and Lucas MULLER

University of Trento, Italy

Meniere's disease: inner-ear disorder

Meniere's disease: inner-ear disorder

There is evidence that Meniere's disease patients have extra-cranial venous outflow strictures

Alpini et al 2013, 2016 Bruno et al. 2014 Bavera et al. 2015 Tessari et al. 2017 Toro et al. 2017 Frau et al. 2019*

Courtesy of Dr N Agarwal MD

There is evidence that Meniere's disease patients have extra-cranial venous outflow strictures

Alpini et al 2013, 2016 Bruno et al. 2014 Bavera et al. 2015 Tessari et al. 2017 Toro et al. 2017 Frau et al. 2019*

Courtesy of Dr N Agarwal MD

The question is: in what way, if any, will the inner-ear circulation be altered?

Animal experiments (Friis and Qvortrup, 2007) Obstruction of the vein of the vestibular aqueduct (VVA)

Animal experiments (Friis and Qvortrup, 2007) Obstruction of the vein of the vestibular aqueduct (VVA)

Is this true in humans?

Here we present some theoretical, quantified evidence that innerear circulation is disrupted by extra cranial venous obstructions

Macrophage Neutrophil

Microvasculature

Mast cell

Pulmonary circulation

Numbers count: our mathematical model

Partial differential equations

Physical principles of conservation of mass and momentum give:

$$\begin{array}{lll} \partial_t A + \partial_x (uA) &= 0\\ \partial_t (Au) + \partial_x \left[A \left(\hat{\alpha} u^2 + \frac{p - p_e}{\rho} \right) - \frac{K}{\rho} \int \phi(A) dA \right] &= s_M \end{array} \right\} \\ s_M = -Ru - \frac{A}{\rho} \partial_x p_e - \frac{1}{\rho} \partial_x K \int \phi(A) dA \\ \hline \mathbf{Unknowns} & \left(\begin{array}{c} A(x,t) & \text{cross-sectional area} \\ q(x,t) & \text{flow} \\ p(x,t) & \text{internal pressure} \end{array} \right) \\ \hline \mathbf{Tube \ law} & p(x,t) = p_e(x,t) + K(A_0(x),h_0(x),E(x))\phi(A,A_0) \\ \hline \phi(A,A_0) = \left[\left(\frac{A}{A_0} \right)^m - \left(\frac{A}{A_0} \right)^n \right] \\ \hline \end{array}$$

Partial differential equations

Physical principles of conservation of mass and momentum give:

$$\begin{array}{lll} \partial_t A + \partial_x (uA) &= 0\\ \partial_t (Au) + \partial_x \left[A \left(\hat{\alpha} u^2 + \frac{p - p_e}{\rho} \right) - \frac{K}{\rho} \int \phi(A) dA \right] &= s_M \end{array} \right\} \\ s_M = -Ru - \frac{A}{\rho} \partial_x p_e - \frac{1}{\rho} \partial_x K \int \phi(A) dA \\ \hline \mathbf{Unknowns} & \left(\begin{array}{c} A(x,t) & \text{cross-sectional area} \\ q(x,t) & \text{flow} \\ p(x,t) & \text{internal pressure} \end{array} \right) \\ \hline \mathbf{Tube \ law} & p(x,t) = p_e(x,t) + K(A_0(x),h_0(x),E(x))\phi(A,A_0) \\ \hline \phi(A,A_0) = \left[\left(\frac{A}{A_0} \right)^m - \left(\frac{A}{A_0} \right)^n \right] \\ \hline \end{array}$$

VALIDATION: comparison with MRI measurements Pressure and flow in transverse sinuses

VALIDATION: comparison with MRI measurements Pressure and flow in transverse sinuses

VALIDATION: comparison with MRI measurements Flow in head and neck veins

VALIDATION: comparison with MRI measurements Arterial flow comparisons with data

vertebral arteries; ICA: Internal Carotid

Artery; MCA: Middle Cerebral Artery;

BA: Basilar Artery; VA: Vertebral Artery.

Right. Asc. Ao.: Ascending Aorta; Kidneys: sum of both Renal Arteries; Tho. Ao.: Thoracic Aorta; Abd. Ao.: Abdominal Aorta; Ext. II. A.: External Iliac Artery; Fem. A.: Femoral Artery.

Case study

RESULTS: Predicted mean pressures in HC and stenotic cases

RESULTS

Predicted cerebrospinal fluid pressures

Summary of our results

- Inner-ear circulation is disrupted
- Pressure in inner-ear veins is increased
- Flow in inner-ear veins is re-directed
- CSF pressure is increased

Summary of our results

- Inner-ear circulation is disrupted
- Pressure in inner-ear veins is increased
- Flow in inner-ear veins is re-directed
- CSF pressure is increased

ACTUALLY:

The entire cerebral and spinal fluid dynamics is disrupted

Potential consequences of our results

Potential consequences of our results

- Locally, perfusion pressure is decreased
- Locally, clearance capacity of metabolic waste is reduced
- Perilymphatic pressure may be increased
- Endolymphatic pressure may be affected
- Potentially, rupture of membranes may occur
- Potassium intoxication

Desirable extension of this work: endolymphatic and perilymphatic spaces

Acknowledgements

Dr L O Müller (Italy)
Dr G I Montecinos (Chile)
Dr L Facchini (Italy)
Dr A Caiazzo (Germany)
M Cristini (Italy)
F Caforio (France)
Q Zhang (Belgium)
C Contarino (Italy)
F Borgioli (Belgium)
M Strocchi (UK)
C Spieller (Italy)
M Celant (Italy)
Prof. A Bellin (Italy)
Dr A Siviglia (Switzerland)
Dr Ee Han (Germany)
Prof. G Warnecke (Germany)
Prof. A Linninger (USA)
Prof. B. Thornber (Australia)

Dr P Zamboni (Italy) Dr E Menegatti (Italy) Dr M Tessari (Italy) Dr F Schelling (Austria) Dr C Anile (Italy) Dr A Bruno (Italy) Prof. M Haacke (USA) Dr R Bonmassari (Italy) Dr N Agarwal (Italy) Dr G N Frau (Italy) Dr L Bertazzi (Italy) Dr G Rossi G (Italy)

Thank You