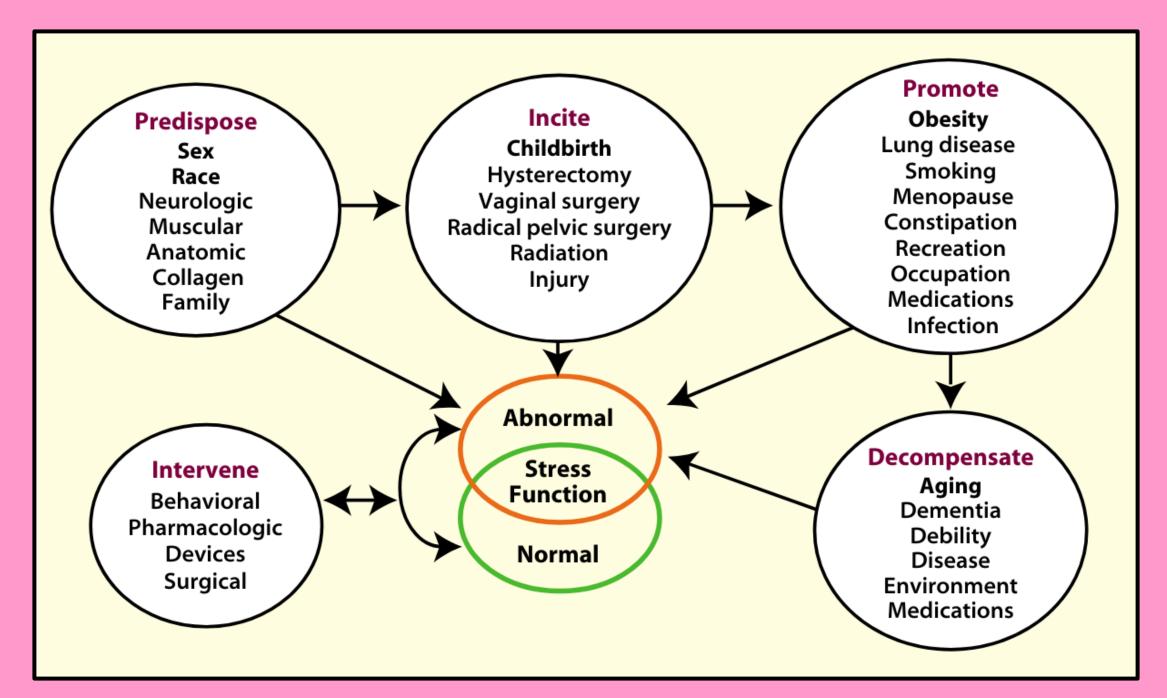
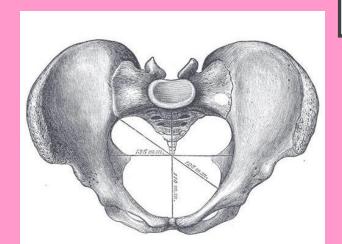
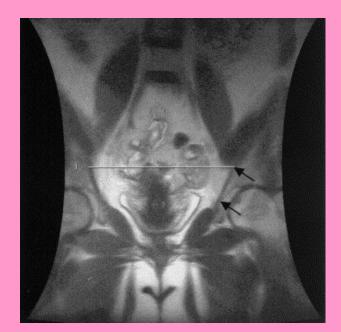

OBESITÀ, STATICA PELVICA E DISTURBI DEL PAVIMENTO PELVICO

Dott.ssa Giulia Maria Pontesilli

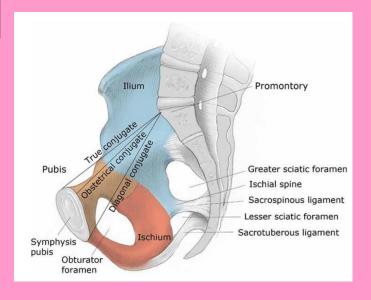
Medicina Interna

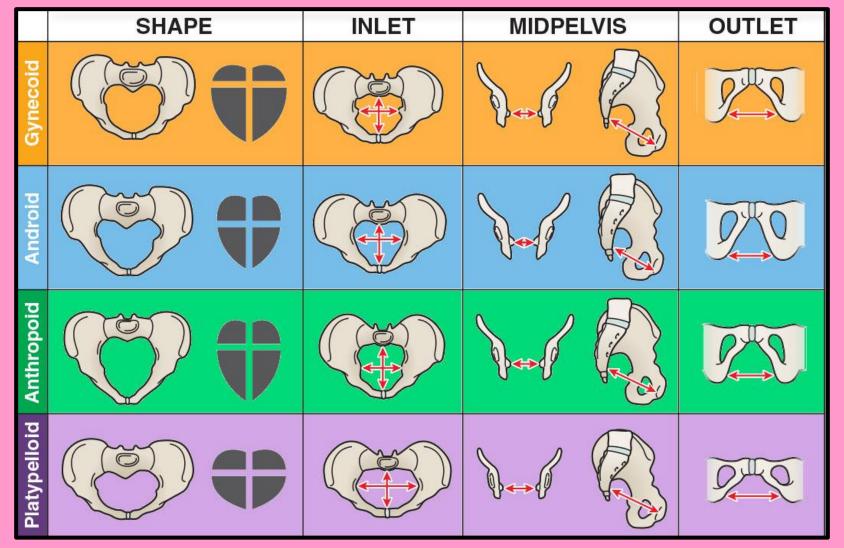

Ospedale Santa Maria della Misericordia – Rovigo


Università di Padova



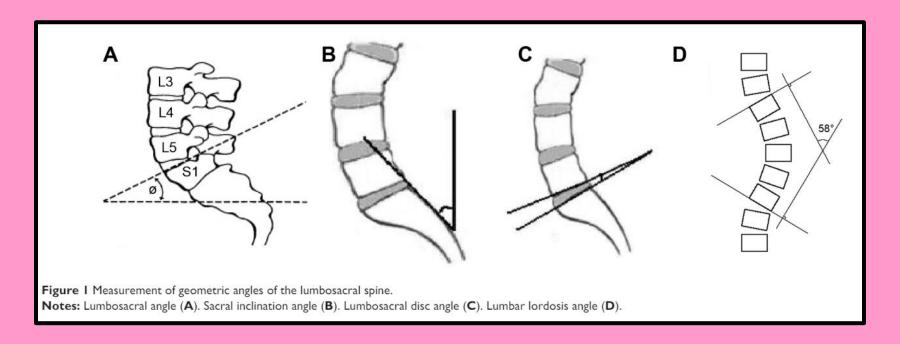
PELVIC FLOOR DYSFUNCTION (PFD)




DIAMETRI PELVICI

Maggior rischio di PFD:

Diametro trasverso ampio > 13.9 cm Coniugata ostetrica stretta



Androide e Antropoide

Diametro fra le spine ischiatiche più stretto; angolo sottopubico più acuto, < di 85°

Platipelloide

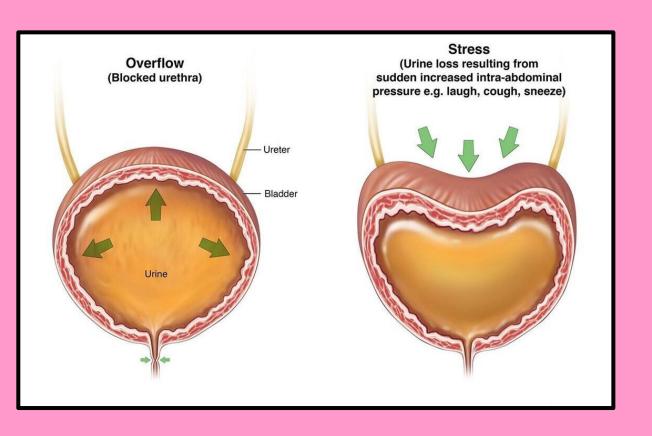
Minor spazio anteroposteriore, spine ichiatiche più distanti tra loro; angolo sottopubico > 85°

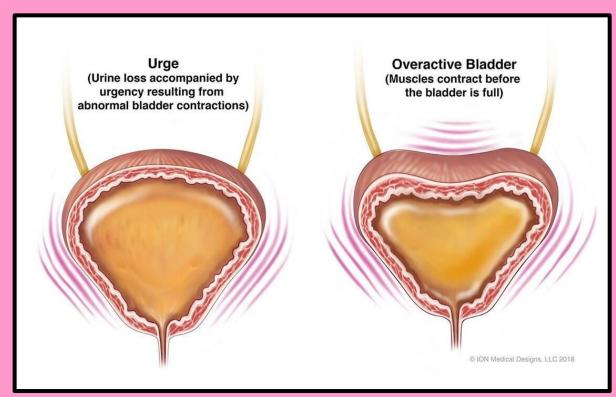
Trasmissione della pressione/peso

 \downarrow

Inclinazione più prominente dell'osso sacro

Ingresso pelvico più grande


Predispone al prolasso dell'organo pelvico (POP)


PREVALENZA DI PROLASSO DEGLI ORGANI PELVICI (POP)

	Normopeso	Obesità
Cistocele	32%	48%
Rettocele	37%	58%
Prolasso uterino	43%	69%

...Rischio maggiore di progressione del grado di prolasso nella paziente con obesità

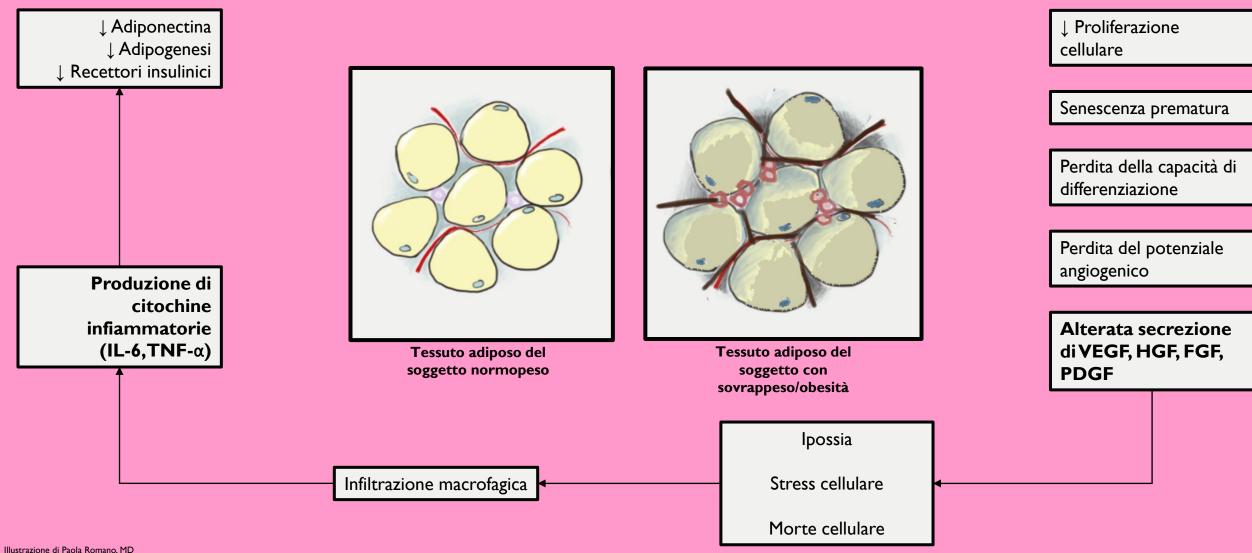
INCONTINENZA URINARIA (UI)

FATTORI INDIPENDENTI DETERMINANTI INCONTINENZA URINARIA (UI)

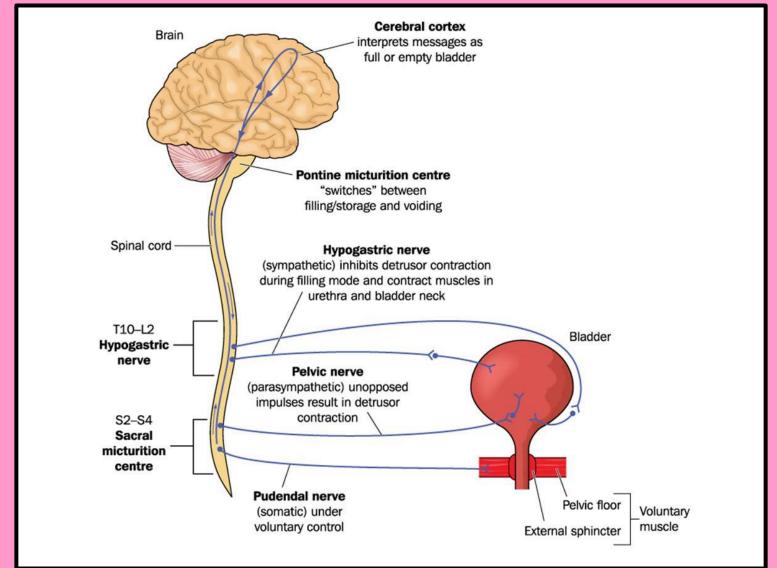
	p value	Odds ratio with 95% CI
Age	0.016	1.02 (1.00–1.04)
BMI	0.000	1.07 (1.04–1.11)
Diabetes	0.000	2.46 (1.80–3.36)

Le donne affette da diabete hanno un rischio aumentato 2,5 volte per UI confrontato con le donne non diabetiche.

SINDROME METABOLICA E INCONTINENZA URINARIA DA STRESS (SUI)


Table 1 Characteristics and SUI prevalence of women with or without MetS								
	Premenopausal with MetS	Premenopausal without MetS	Postmenopausal with MetS	Postmenopausal without MetS	p value			
Age (mean \pm SD)	41.4 (32–48)	43.4 (32–50)	58.1 (48–73)	57.4 (47–71)	0.52			
BMI (mean \pm SD)	28.94 ± 3.63	27.68 ± 7.06	28.83 ± 0.01	27.15 ± 0.02	< 0.05			
Weight (kg, mean \pm SD)	78.78 ± 15.55	79.42 ± 15.55	78.52 ± 14.14	77.74 ± 17.67	0.41			
Height (meter, mean \pm SD)	1.65 ± 0.042	1.65 ± 0.042	1.65 ± 0.014	1.64 ± 0.007	0.95			
Glucose (mg/dl) (mean \pm SD)	117.27 ± 26.16	97.02 ± 0.70	113.08 ± 8.48	98.83 ± 9.19	< 0.001			
Hypertension n (%)	59 (14.7 %)	44 (11 %)	65 (16.2 %)	41 (10.2 %)	< 0.001			
TG (mg/dl) (mean \pm SD)	163.76 ± 63.63	116.27 ± 16.97	168.81 ± 89.80	140.41 ± 84.85	< 0.001			
HDL-C (mg/dl) (mean \pm SD)	42.96 ± 2.12	49.73 ± 4.24	43.9 ± 2.12	49.66 ± 3.53	< 0.001			
WC (cm, mean \pm SD)	94.33 ± 7.07	88.18 ± 1.41	93.9 ± 12.02	92.43 ± 0.02	< 0.001			
SUI (+) n (%)	34 (8.5 %)	17 (4.3 %)	48 (12 %)	20 (5 %)	< 0.001			

SUI Stress urinary incontinence, MetS Metabolic syndrome, BMI Body mass index, HDL-C High-density lipoprotein cholesterol


SINDROME METABOLICA

Circonferenza vita	≥ 102 cm ♂		
Circonierenza vita	≥ 88 cm ♀		
Trigliceridi	≥ I50 mg/dL		
Calastavala UDI	< 40 mg/dL ♂		
Colesterolo HDL	< 50 mg/dL ♀		
PAO	≥ 130 mmHg sistolica		
PAU	≥ 85 mmHg diastolica		
Glicemia a digiuno	≥ 100 mg/dL		
Diagnosi: almeno 3			

ADIPOSOPATIA

CISTOPATIA DIABETICA

Più della metà dei pazienti affetti da diabete mellito soffre di disfunzioni vescicali.

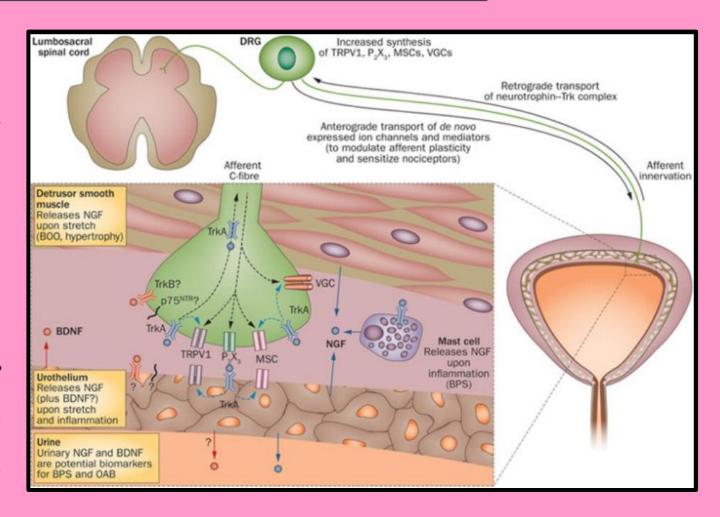
La cistopatia diabetica consiste in una diminuita sensibilità della vescica, difficoltà a iniziare la minzione, alterazioni del flusso urinario e residuo post-minzionale.

Nell'uomo ciò si può associare a ostruzione ureterale dovuta a ipertrofia prostatica.

Ogni aumento di unità di HbA1c causa un rischio aumentato di 2,5 volte di avere LUTS moderati/severi

Un'elevata glicemia esacerba i sintomi, anche a causa di poliuria dovuta ad escrezione di glucosio e aumentata presenza di recettori nervosi purinergici

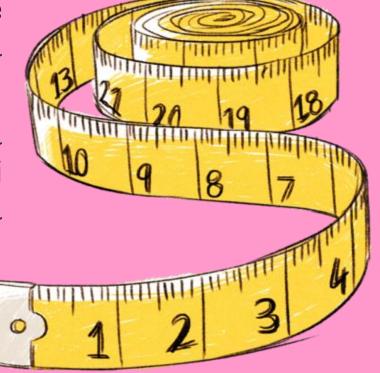
Il paziente con diabete è maggiormente soggetto a IVU, anche a causa di glicosuria.



VESCICA IPERATTIVA (OAB, OVERACTIVE BLADDER)

- Meccanismo <u>miogenico</u>: contrazioni autonome del muscolo detrusore
- Meccanismo <u>neurogenico</u>: danno dei pathways inibitori a livello midollare e cerebrale

La sindrome metabolica e la vescica iperattiva condividono alcuni markers proinfiammatori, come il **nerve growth factor (NGF)**, i cui livelli (dosabili su urine) sono elevati nella OAB e nell'obesità.


NFG è prodotto nella vescica da urotelio e cellule muscolari lisce in risposta a distensione muscolare e infiammazione, allo scopo di sensibilizzare le fibre C afferenti. È un modulatore di plasticità neurale; la sua eccessiva presenza provoca neuropatie autonomiche e periferiche tramite alterazione della trasmissione autonomica e sensitiva della vescica.

CALO PONDERALE COME TERAPIA

Il calo ponderale è un trattamento efficace per le donne affette da sovrappeso e obesità con UI.

La perdita di peso dal 5% al 10% ha un'efficacia simile a quella di altri trattamenti non chirurgici e dovrebbe essere considerata una terapia di prima linea per l'incontinenza.

GLP-IRA LIRAGLUTIDE, SEMAGLUTIDE, TIRZEPATIDE

EFFETTI NEUROPROTETTIVI

Abbassamento dei livelli sistemici delle citochine proinfammatorie (IL-6)

Prevenzione della componente neuroinfammatoria nelle fasi iniziali della neuropatia diabetica.

Miglioramento della neuropatia diabetica periferica, a livello strutturale e morfologico.

Neurogenesi, maggiore sopravvivenza neuronale, sinaptogenesi.

Riduzione della neuroinfiammazione e dei marcatori patologici di aggregazione proteica in modelli animali di lesione neuronale.

EFFETTI VASCOLARI

Stimolazione dell'endotelio a produrre ossido nitrico

Riduzione dello stress ossidativo

Effetti antiaterogeni

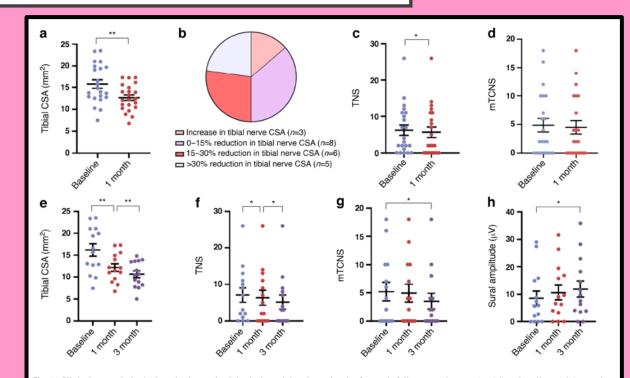


Fig. 1 Clinical, morphological and electrophysiological peripheral neuropathy outcomes. (a, c, d) Peripheral neuropathy outcomes for the whole cohort (n=22) at baseline and 1 month post treatment: (a) mean tibial nerve CSA; (c) mean TNS; and (d) mean mTCNS. (b) Pie chart illustrating the ranges of percentage reduction in tibial nerve CSA for the whole cohort (n=22) over 1 month following commencement of GLP-1 RA therapy. (e-g) Peripheral neuropathy outcomes

for the 3 month follow-up subgroup (n=14) at baseline and 1 month and 3 months post treatment: (e) mean tibial nerve CSA; (f) mean TNS; and (g) mean mTCNS. (h) Mean sural nerve amplitude for participants who were assessed at baseline and 1 month and 3 months post treatment (n=14). Data are expressed as mean \pm SEM. *p<0.05, **p<0.01

Erbil, D., Eren, C.Y., Demirel, C., Küçüker, M. U., Solaroğlu, I., & Eser, H.Y. (2019). GLP-1's role in neuroprotection: a systematic review. Brain Injury, 33(6), 734-819. https://doi.org/10.1080/02699052.2019.1587000

Dhanapalaratnam, R., Issar, T., Lee, A.T. K., Poynten, A. M., Milner, K.-L., Kwai, N. C. G., & Krishnan, A.V. (2024). Glucagon-like peptide-I receptor agonists reverse nerve morphological abnormalities in diabetic peripheral neuropathy. Diabetologia, 67(3), 561–566. https://doi.org/10.1007/s00125-023-06072-6

Monti, G., Gomes Moreira, D., Richner, M., Mutsaers, H.A. M., Ferreira, N., & Jan, A. (2022). GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells, 11(13), 2023. https://doi.org/10.3390/cells11132023

CHIRURGIA BARIATRICA

La massiccia perdita di peso attraverso la chirurgia bariatrica ha un effetto positivo sulla funzione del pavimento pelvico e sulla qualità della vita nelle donne con obesità severa

Table 2	Evolution of	pelvic floor	disorders	before and	l after	bariatric surgery in wor	nen ($n = 70$).
---------	--------------	--------------	-----------	------------	---------	--------------------------	-------------------

	Preoperative score	Postoperative score	<i>P</i> -value	95% CI
POPDI-6	4.34 ± 9.07	4.82 ± 9.05	0.746	-3.3; 2.4
CRADI-8	8.16 ± 10.75	11.02 ± 11.87	0.0786	-6.0; 0.3
UDI-6	19.34 ± 20.36	12.38 \pm 18.27	0.009	1.7; 12.1
PFDI-20	31.86 ± 33.80	28.22 ± 31.59	0.426	-5.4; 12.6

POPDI: pelvic organ prolapse distress inventory; CRADI-8: colorectal-anal distress inventory; UDI-6: urogenital distress inventory; PFDI-20: pelvic floor distress inventory.

TABLE 1 - Probability of urinary incontinence before and after bariatric surgery


UI -	UI - Postoperative		Total	n value(*)	
Preoperative	No	Yes	IOLAI	p-value(*)	
No	7	0	7	(n +0 001)	
Yes	12	5	17	(p<0,001)	
Total	19	5	24		
(*) Binomial test, p <0.05; NOTE: UI = urinary incontinence					

TABLE 2 - Comparison of scores from the King's Health Questionnaire pre and post-bariatric surgery

Domain	Period	N	Mean	Median	SD	p-value (*)	
	Preoperative	17	61,76	75,00	20,00		
General health	Postoperative	17	16,18	25,00	15,16	<0,001	
	Difference	17	-45,59	-50,00	22,07		
	Preoperative	17	56,86	33,33	28,30		
UI impact	Postoperative	17	7,84	0,00	14,57	0,001	
	Difference	17	-49,02	-33,33	31,44		

TABLE 3 - Evaluation of pelvic floor muscle strength preoperatively and postoperatively according to the modified Oxford scale

Period	N	Mean	Median	Standard deviation	p-value(*)		
Preoperative	24	2,7	3,0	0,9			
Postoperative	24	3,7	4,0	1,1	<0,001		
Difference	24	1,0	1,0	0,8			
(*) Non-parametric Wilcoxon test, p < 0.05							

Grazie per l'attenzione

AULSS 5 Polesana

U.O.C. Medicina Generale

giulia.pontesilli@aulss5.veneto.it

gmpontesilli.md@gmail.com

@giuliamariapontesilli.md

AULSS 5 Polesana

Ospedale Santa Maria della Misericordia di Rovigo