

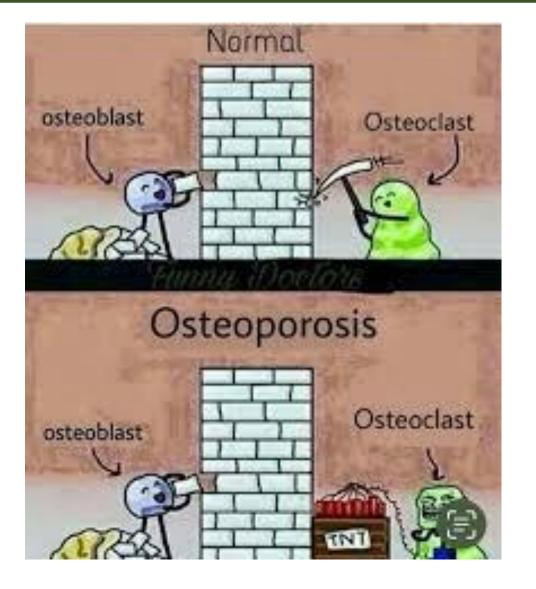
Le Obesità: aspetti psico-nutrizionali e aggiornamenti terapeutici

TERAPIA DELL'OBESITÀ: OSTEOPOROSI

Dr. Cattaneo Camilla Alice

U.O. di Endocrinologia e Malattie del Ricambio Direttore: Prof. Maria Chiara Zatelli

LINEE GUIDA OBESITA'



OSTEOPOROSI

Patologia caratterizzata da una riduzione della massa ossea e da un deterioramento della microarchitettura del tessuto osseo, che induce un'aumentata fragilità ossea, con un conseguente aumento del rischio di frattura

AGENDA

Obesità: fattore di rischio o protettivo?

• Effetti diretti delle terapie per l'obesità

Effetto della perdita di peso

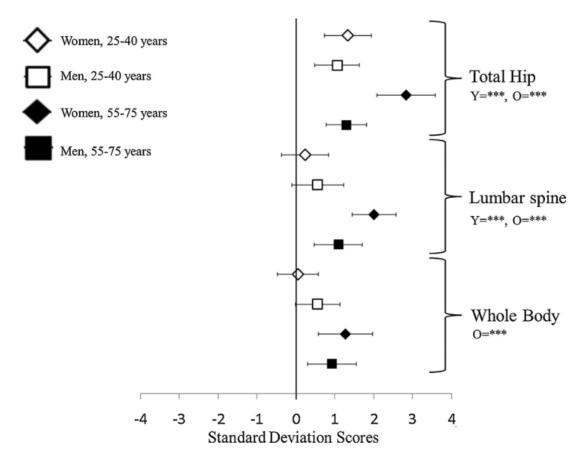
AGENDA

• Obesità: fattore di rischio o protettivo?

• Effetti diretti delle terapie per l'obesità

Effetto della perdita di peso

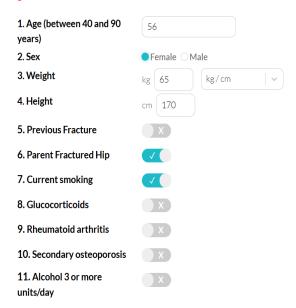
Basso BMI = aumento del rischio fratturativo

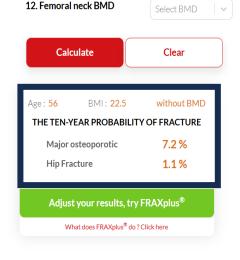

Tabella V - Fattori di rischio per osteoporosi e/o fratture osteoporotiche.

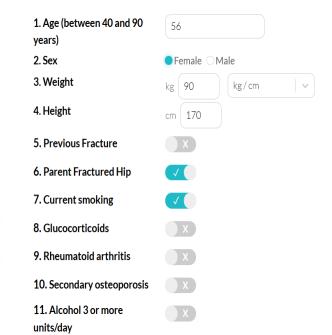
- Età
- · Sesso femminile

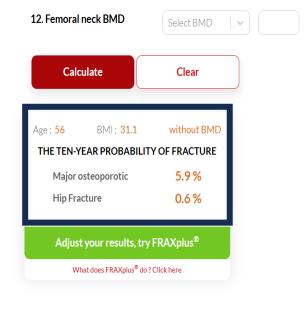
Basso indice di massa corporea

Inizialmente considerato un fattore protettivo, sia per maggiori livelli di BMD che per la protezione dalle cadute


Pazienti con BMI più alto hanno una BMD superiore a soggetti di pari età e sesso normopeso, in particolare i soggetti più anziani




Questionnaire



Questionnaire

Effetti dell'obesità sull'osso

■ Effetti positivi ↑ Carico meccanico

↑ Estrogeni

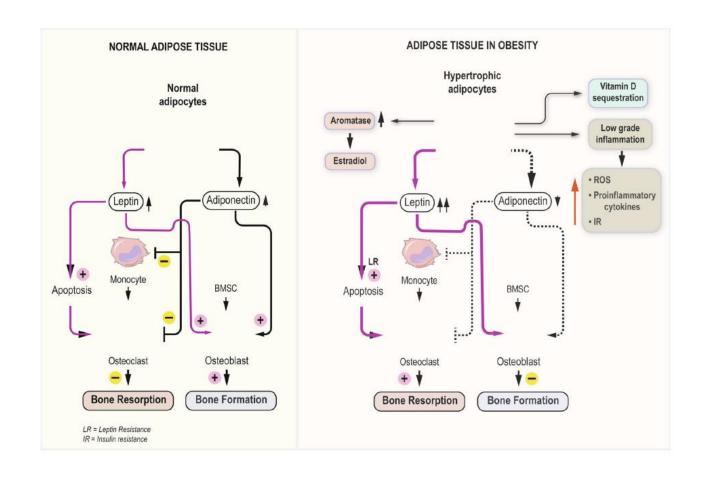
↑ Leptina

Effetti negativi ↑ Leptina

↓ Adiponectina

↑ TNF-α

1 IL-6

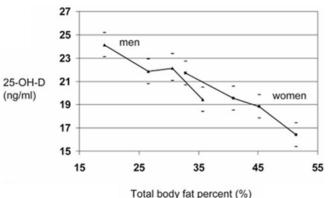

↑ PPARγ

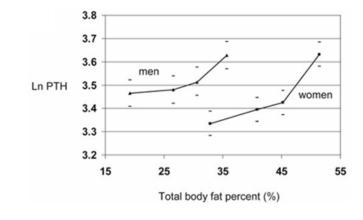
↑ PTH

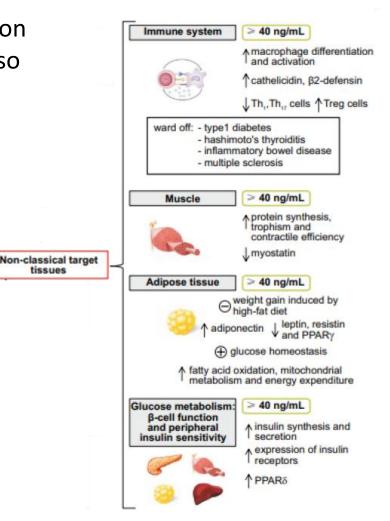
Dislipidemia

↑ Palmitato

↓ vitamina D




La prevalenza di carenza di vitamina D è superiore del 35% nei soggetti con obesità rispetto ai soggetti normopeso e del 24% ai soggetti in sovrappeso

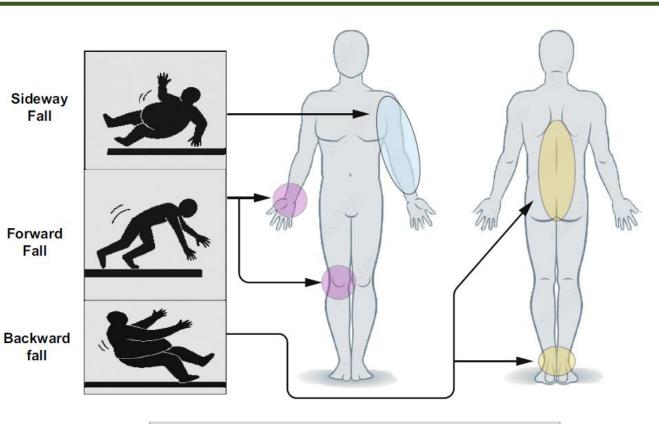

Possibili meccanismi:

- Sequestro della vitamina D nel tessuto adiposo
- Evitamento dell'esposizione al sole
- Scarsa assunzione alimentare di cibi ricchi di macro e micronutrienti

Studio di 453 soggetti ha mostrato che il BMI inversamente correlato ai livelli sierici di vitamina D e positivamente correlato con i livelli di PTH

tissues

FRATTURE NEL PAZIENTE OBESO


Aumento del rischio di cadute in entrambi i sessi con ↑ RR 1,16 (IC 95% 1,07-1,26)

Meccanismi implicati:

- Ridotta agilità
- Instabilità posturale
- Obesità sarcopenica
- Artrosi degli arti inferiori
- Neuropatia diabetica

Fratture frequenti

- Popolazione generale: anca, polso
- Popolazione obesa: caviglia, gamba inferiore, omero prossimale

Hip padding (protective)

Backward or sideward falling

Introversion and extroversion of the ankle and lower leg → Sprains and fractures of the ankle

Maggiore BMD

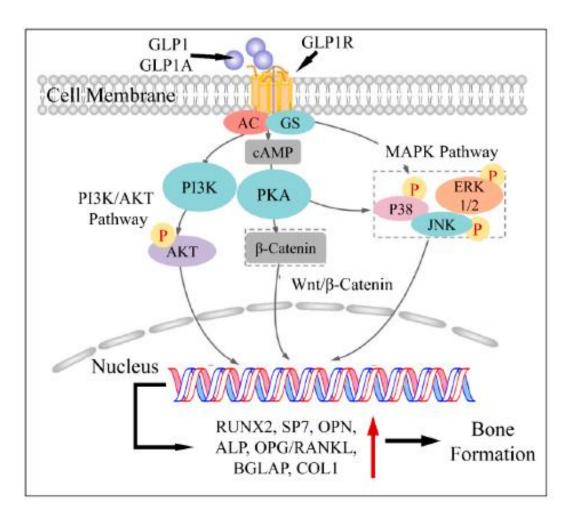
- Ipovitaminosi D
- Maggiore tendenza alle cadute
- Stato infiammatorio cronico
- Comorbidità

AGENDA

• Obesità: fattore di rischio o protettivo?

• Effetti diretti delle terapie per l'obesità

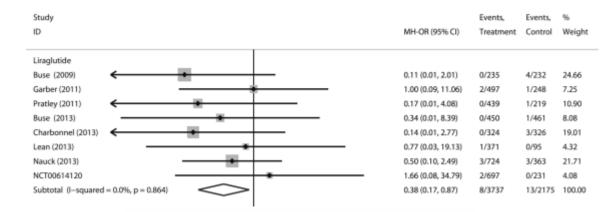
Effetto della perdita di peso



GLP-1

AZIONI DEL GLP-1:

- Upregolazione dei geni RUNX2, ALP, COL1, CO, P1NP
- Riduzione dei livelli di mRNA del gene SOST, codificante la sclerostina
- Inibisce l'attività degli osteoclasti
- Riduce i livelli di glucosio circolanti con effetto indiretto positivo sull'osso

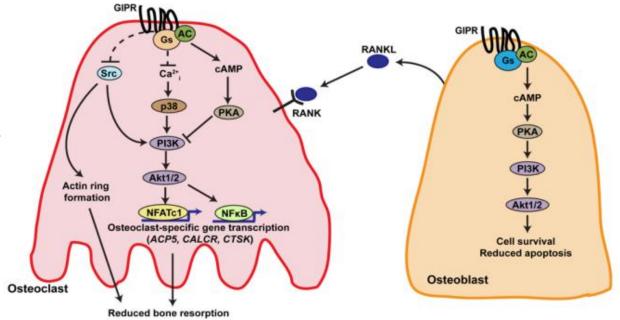

Daniilopoulou et al, Medicina (Kaunas). 2022 Feb 2;58(2):224.

GLP-1RAs - Studi clinici

Paper/ Reference	Study	Subjects	Study Duration	Measurements	Fracture Risk	BMD	Bone Metabolism/ Turnover Markers	Main Results
Bunck et al. (2011) [36]	RCT	69 metformin-treated T2D patients with exenatide vs. insulin glargine	44 weeks	BMD, ALP, Ca, P		\leftrightarrow	$\begin{array}{c} \text{ALP:} \leftrightarrow \\ \text{Ca:} \leftrightarrow \\ \text{P:} \leftrightarrow \end{array}$	BMD, serum markers of bone metabolism and calcium homeostasis remained unaffected by exenatide treatment
Li et al. (2015) [37]	RCT	62 newly diagnosed and drug-naïve patients with T2D, treated with exenatide vs. insulin vs. pioglitazone	24 weeks	HbA1C, BMD, CTX, OC, TRAcP5b		\leftrightarrow	HbA1C: ↑ CTX: ↔ OC: ↔ TRAcP5b: ↔	Exenatide had no impact on bone turnover markers or BMD
Gilbert et al. (2016) [38]	RCT	61 T2D patients, treated with liraglutide and glimepiride	52 or 104 weeks	BMD		\leftrightarrow		Liraglutide did not affect total BMD
Iepsen et al. (2015) [39]	RCT	37 healthy obese women aged 46 ± 2 years treated with or without liraglutide	52 weeks	CTX-1, P1NP			CTX-1: ↔ P1NP: ↑	Liraglutide increased P1NP by 16% but did not change CTX-1
Mabilleau et al. (2014) [40]	Meta- analysis	A meta-analysis, 28 RCTs were identified T2D, treated with either a GLP1Ra or another antidiabetic drug	24 weeks (at least)	Incidence of bone fracture	\leftrightarrow			GLP1RA was not associated with reduced fracture risk
Su et al. (2015) [41]	Meta- analysis	A meta-analysis, 16 RCTs were identified, Liraglutide or exenatide treatnebt vs. placebo or other diabetic drugs	N/A	Risk of bone fracture	Liraglutide: ↓ Exenatide: ↑			Liraglutide might reduce the risk of bone fractures while exenatide might increase the risk of bone fractures
Zhang et al. (2018) [42]	Meta- analysis	Network meta-analysis, 54 RCTs were identified, GLP1Ra vs. other hypoglycemic drugs vs. placebo	N/A	Fracture risk	Exenatide: ↓			Exenatide was associated with a decreased risk of bone fracture
Driessen et al. (2015) [43]	Case Control	A case-control study of NIAD users vs. GLP1RA users	N/A	Risk of fractures	\leftrightarrow			GLP1RA was not associated with fracture risk
Driessen et al. (2015) [44]	Case Control	Population-based cohort, T2D patients with at least one prescription for NIAD GLP1RA vs. non-GLP1RA	N/A	Bone fracture risk	\leftrightarrow			GLP1RA was not associated with decreased bone fracture

Su B et Al, Endocrine. 2015 Feb;48(1):107-15.

Daniilopoulou I et Al, Medicina (Kaunas). 2022 Feb 2;58(2):224 Al Refaie A et Al, Endocrine. 2025 Jul;89(1):30-38.

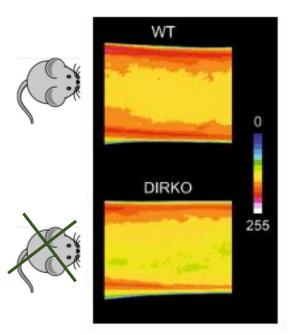

GIP

Osteoclasti

- Espressione elevata di GIPR nei precursori maturi
- GIP riduce il riassorbimento osseo e il numero di nuclei per cellula
- Azione mediata da molteplici vie di segnalazione (Src, Akt, p38, NFkB, NFATc1) con ridotta differenziazione, aumentata apoptosi

Osteoblasti

- GIPR presente anche negli osteoblasti
- GIP aumenta cAMP e p-Akt , favorendo la sopravvivenza cellulare
- Riduzione di apoptosi (↓ caspasi-3/7, ↓
 TUNEL+ cellule)

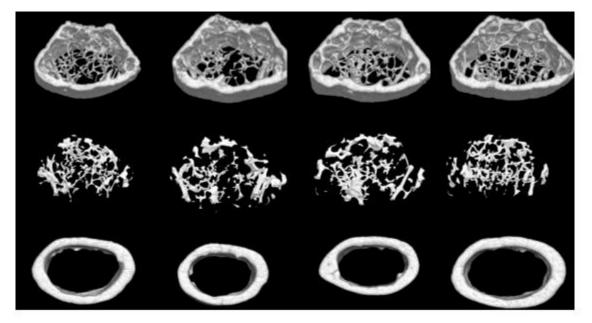

GLP1-RA e GIP-RA

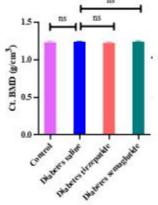
Osteoporos Int (2015) 26:209-218 DOI 10.1007/s00198-014-2845-8

ORIGINAL ARTICLE

Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength

A. Mieczkowska • S. Mansur • B. Bouvard • P. R. Flatt • B. Thorens • N. Irwin • D. Chappard • G. Mabilleau





Article

Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice

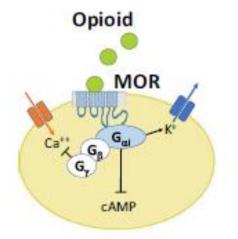
Fang Lv, Xiaoling Cai * D, Chu Lin, Wenjia Yang and Linong Ji *

Control

Diabetes saline

Diabetes semaglutide

Diabetes tirzepatide



OPPIOIDI

Gli oppioidi aumentano il rischio fratturativo attraverso diversi meccanismi:

- Effetti neurologici: possono provocare vertigini e sedazione, aumentando il rischio di cadute
- Ipogonadismo secondario: l'inibizione dell'asse ipotalamo-ipofisi-gonadi (HPG) determina una riduzione di GnRH, FSH e LH, con conseguente calo dei livelli di testosterone
- Effetto diretto sull'osso: gli oppioidi possono ridurre l'attività degli osteoblasti, compromettendo la formazione del callo osseo e rallentando il processo di guarigione delle fratture

CNS effects: Sedation, dizziness Increased falls

Endocrine effects: Secondary Hypogonadism Reduced BMD

Direct activity on osteoblasts:
Impaired Bone Healing

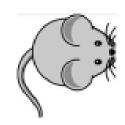

ANTAGONISTI DEI RECETTORI DEGLI

Table 2 Effects of opioid antagonists on bone healing

OPPIOIDI

Nei modelli murini l'uso di questi farmaci ha:

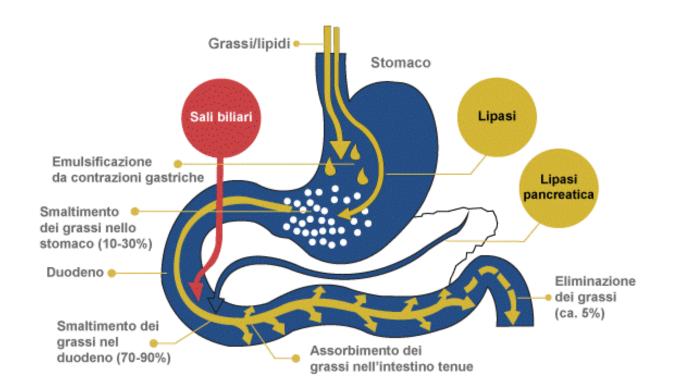
- incrementato il numero di osteoblasti
- aumentato la formazione ossea
- incrementato la massa ossea nei topi
- accelerato la guarigione ossea

Opioid antagonist	Authors	Study design	Study model	Results
Naloxone	Pérez-Castrillón JL et al., [5]	In vitro	Human osteoblast-like cell line MG-63	Simultaneous incubation with naloxone completely abolished the effects of morphine on osteocalcin synthesis. Preincubation with naloxone potentiated morphine-induced osteocalcin inhibition.
Naloxone	Baik SW et al., [10]	In vitro	Human osteoblasts (hypoxia-reoxygenation insult, cultured under 1% oxygen tension for 24 h)	Pre-treatment (30 min) with naloxone did not hamper the protective effect of remifentanil on proliferation, maturation, and differentiation of osteoblasts.
Naloxone	Petrizzi L et al., [19]	In vivo	Ovine "drill hole" model system	Naloxone alone or associated with calcium gluconate increased radiographic ratio after surgery, with no difference in the increase of radiodensity between the lateral and medial cortical defects. Naloxone treatment was associated with: a) More bone caverns and lower cellularity around the drill hole b) New bone and less fibrous tissue and parent bone, when administrated both alone and in association with calcium gluconate
Naloxone	Queiroz-Junior CM et al., [23]	In vivo	Rats (experimental model of periodontal disease induced by ligature)	Naloxone: a) Increased alveolar bone loss in a dose-dependent manner b) Increased myeloperoxidase levels, osteoclast number, and cytokines (IL-6, IL-8, TNF- α , and IL-10) in periodontal tissues c) Did not affect the loss of fiber attachment
Naloxone	Takur NA et al. [21]	In vitro In vivo	Human bone marrow mesenchymal cells (MSC) and osteoblasts Mice (unicortical defect)	Naloxone induced a decrease in cell proliferation, except for the OGFR deficient MSC Naloxone resulted in a substantial increase in bone formation.
Naloxone	Janas A et al., [15]	In vivo	Wistar rats: - bilateral ovariectomized (OVX) - nonovariectomized (NOVX) Evaluation of tibial and femoral bones and L-4 vertebras	Naloxone (2 mg/kg s.c.) for 4 weeks did not affect: a) The body mass gain, the serum concentration of estradiol, and the ratios of the uterus and thymus mass to the body mass b) The longitudinal growth of the tibia and femur c) Calcium and phosphorus content in the bone; serum bone turnover markers and calcium levels both in NOVX and OVX rats d) The bone mineral mass/bone mass ratio in OVX rats e) The mechanical properties of the tibial metaphysis in NOVX rats, nor the mechanical properties of the femoral diaphysis and neck both in NOVX and OVX rats
Naltrexone	Tanaka K et al., [20•]	In vivo	ICR male mice	28 days-long treatment with intraperitoneal naltrexone: a) Increased bone formation ratio, femoral bone mass, and osteoblast number/bone surface values b) Increased osteoblast number by blocking the OGFR signaling, hence increasing bone mass
Naltrexone	Moradi M et al., [22]	In vivo	Rats (experimental model of cirrhotic rats)	28 days-long treatment with naltrexone (10 mg/kg) reversed: a) The increase of plasma TRAIL, estrogen, adiponectin, sclerostin, and BALP, and the decrease of testosterone levels b) The decrease of femur strength

ORLISTAT

Orlistat può causare:

- Riduzione dell'assorbimento di calcio
- Riduzione dell'assorbimento di vitamina D


Possibile iperparatiroidismo secondario e aumento del riassorbimento osseo

Clinical Trial > Int J Obes Relat Metab Disord. 2001 Aug;25(8):1154-60. doi: 10.1038/sj.ijo.0801639.

Influence of orlistat on bone turnover and body composition

A Gotfredsen ¹, H Westergren Hendel, T Andersen

- Orlistat: ↓ BMD avambraccio
- Entrambi i gruppi: ↓ 250HD, ↑ PTH, ↑ turnover osseo

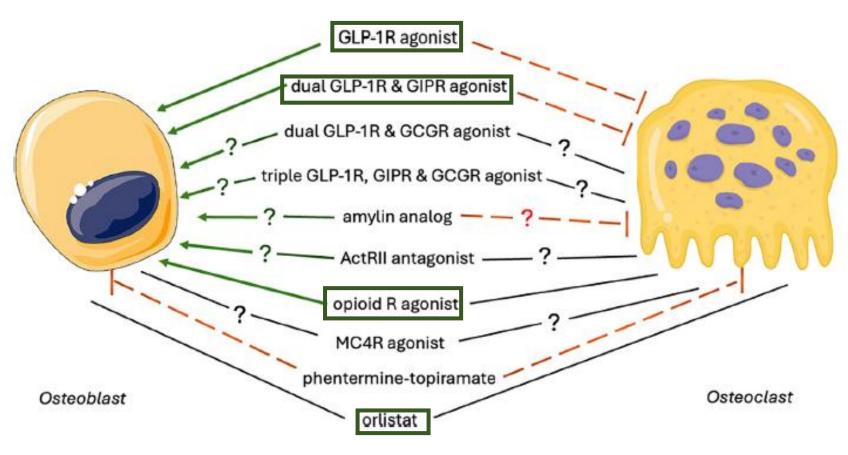
Gotfredsen A et al, Int J Obes Relat Metab Disord. 2001;25(8):1154-1160.

EFFETTI DIRETTI DELLE TERAPIE

GLP-1RAs:

- Stimola gli osteoblasti
- Inibizione degli osteoclasti

Dual GLP-1R & GIPRA:


- Stimola gli osteoblasti
- Inibizione degli osteoclasti

Opioid receptor agonist

- Stimola gli osteoblasti
- Effetto incerto sugli osteoclasti

Orlistat

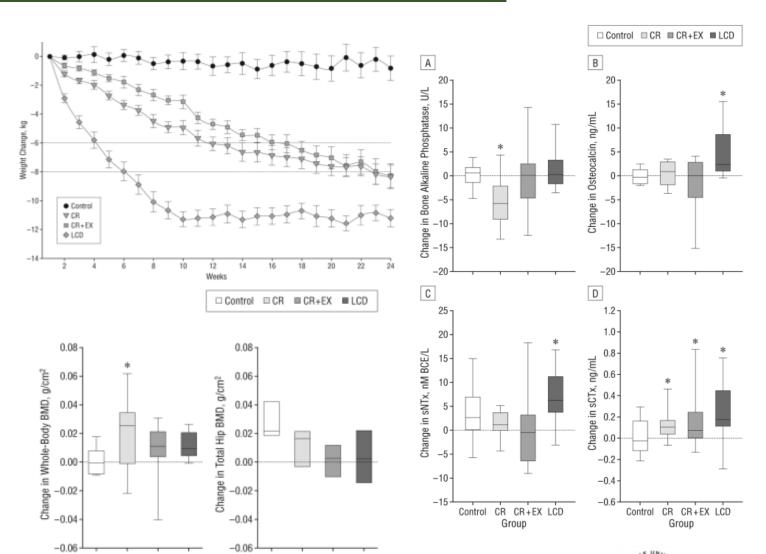
 Nessun effetto definito noto su osteoblasti o osteoclasti

AGENDA

• Obesità: fattore di rischio o protettivo?

• Effetti diretti delle terapie per l'obesità

• Effetto della perdita di peso


PERDITA DI PESO

Perdita di peso del 10% determina:

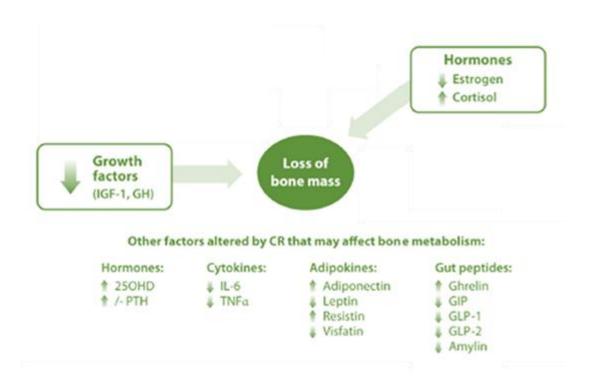
- perdita ossea del 1%-2% a livello dell'anca e del corpo totale
- perdita del 3%-4% a livello di trocantere e il radio
- aumento dei markers di riassorbimento osseo

Sia la riduzione di peso volontaria che quella involontaria comportano una perdita di densità minerale ossea (BMD)

Studio CALERIE: studio su giovani sovrappeso. I soggetti che hanno perso rapidamente il 15% del peso corporeo (LCD) non hanno mostrato una perdita ossea maggiore rispetto a individui sottoposti a un intervento di perdita di peso più lento e moderato (CR; CR+EX)

PERDITA DI PESO

Alterazioni ormonali


- ↓ Estrogeni e ormoni sessuali → aumento del riassorbimento osseo
- ↑ SHBG → riduce la biodisponibilità degli ormoni sessuali
- ↑ Cortisolo per la restrizione calorica → effetto negativo diretto
- ↓ IGF-1 (fattore di crescita insulino-simile) → ridotta formazione ossea

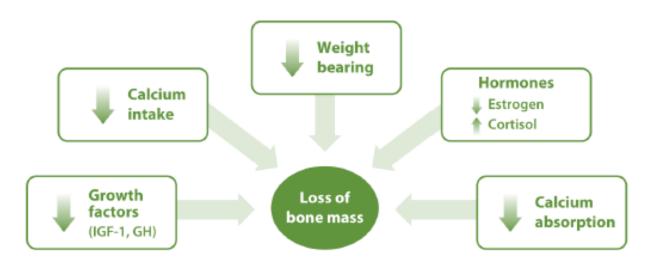
Alterazioni citochiniche

 \downarrow Citochine proinfiammatorie (IL-1, IL-6, TNF- α)

Alterazioni adipocitochine

- ↓ Leptina, GLP-1, GIP
- ↑ Adiponectina

PERDITA DI PESO


Riduzione intake e assorbimento di calcio

Attivazione asse PTH → incremento del turnover osseo

Ridotta sollecitazione meccanica

- \downarrow massa magra (muscolo) \rightarrow riduzione del carico meccanico sull'osso.
- ↓ peso corporeo totale → minore stimolo osteogenico da carico gravitazionale

Età e sesso: maggiore vulnerabilità nelle donne postmenopausali e negli uomini anziani **Peso iniziale basso**: individui magri perdono più BMD rispetto a quelli obesi

Other factors altered by CR that may affect bone metabolism:

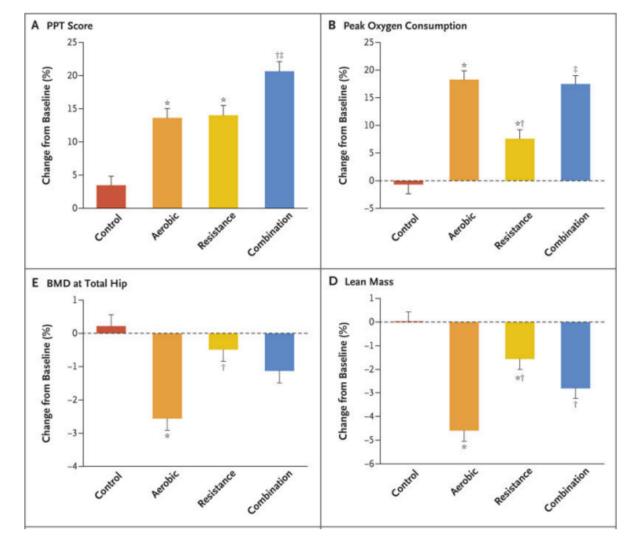
Hormones:	Cytokines:	Adipokines:	Gut peptides
↑ 25OHD ↑ /- PTH	↓ IL-6 ↓ TNFα	↑ Adiponectin ↓ Leptin ↑ Resistin ↓ Visfatin	↑ Ghrelin ↓ GIP ↓ GLP-1 ↓ GLP-2 ↓ Amylin

INTERVENTI PROTETTIVI

- Apporto adeguato di calcio (≥1,2–1,7 g/d) → attenua la perdita ossea
- Vitamina D (≥2.500 IU/d) → mantiene assorbimento di Ca durante restrizione calorica
- Dieta iperproteica (≈24% calorie totali) → riduce perdita di BMD tramite ↑ IGF-1 e ↑ assorbimento di Ca
- Esercizio fisico con carico e impatto → attenua, ma non elimina completamente, la perdita ossea

ATTIVITA' FISICA

Studio randomizzato e controllato su 160 adulti obesi ≥65 anni Interventi (6 mesi di follow-up) 4 gruppi:


- nessuno
- dieta + esercizio aerobico
- dieta + esercizio di resistenza
- dieta + esercizio combinato (aerobico + resistenza)

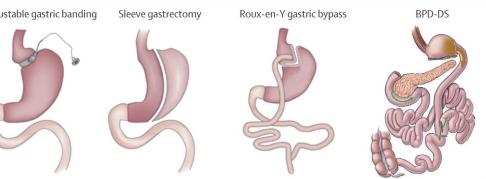
Tutti i gruppi hanno raggiunto simile perdita di peso.

Aerobico → ↑ capacità cardiorespiratoria

Resistenza → ↑ forza muscolare e riduzione della perdita muscolare e di BMD

Combinato → ↑ capacità cardiorespiratoria e forza

CHIRURGIA BARIATRICA


Before surgery	Prevention	Follow up	
Calcium			
Serum PTH	1200-1500 mg/day (after AGB, RYGB, and S.G.)	Every 6-12 month (S.G., RYGB, BPD/BPD-DS) Every 12 month (AGB) then annually	
Serum calcium	1800-2400 mg/day (after BPD/BPD-DS) (food and		
Serum 25(OH) D	supplements)**		
DXA at spine and hip (RYGB, BPD, BPD-DS; in higher-risk patients)*		DXA at spine and hip 2 years postoperatively (all patients)	
Vitamin D			
Serum 25(OH) D	3000 IU D3/day (normal range 25(OH) D>30 ng/	Every 6-12 month (S.G., RYGB, BPD/BPD-	
Serum PTH	mL)***	Every 12 month (AGB)	
Protein			
Serum albumin	46 g/day - women	6-12 month	
	56 g/day - men	Serum albumin (S.G., RYGB, BPD/BPD-DS)	
	Protein needs	12 month (AGB), then annually for all patients	
	Should constitute:	Adiabable matic banding Classes	
	10%-35% of daily caloric intake	Adjustable gastric banding Sleeve gastrectomy	
	Weight maintenance: 0.8-1.2 g/kg body weight/day		

Active weight loss: 1.2 g/kg body weight (BPD/DS

may require 1.5-2.0 g/kg body weight/day)

Sayadi Shahraki M et al, *Adv Biomed Res*. 2022;11:92. Published 2022 Oct 31.

Grazie per l'attenzione!

20 ottobre 2025

